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Abstract

Subspace learning aims to learn a projection matrix from a given training
set so that a transformation of raw data to a low-dimensional representation
can be obtained. In practice, the labels of some training samples are avail-
able, which can be used to improve the discrimination of low-dimensional
representation. In this paper, we propose a semi-supervised learning method
which is inspired by the biological observation of similar inputs having similar
codes (SISC), i.e., the same collection of cortical columns of the mammal’s
visual cortex are always activated by the similar stimuli. More specifically, we
propose a mathematical formulation of SISC which minimizes the distance
among the data points with the same label while maximizing the separability
between different subjects in the projection space. The proposed method,
namely, semi-supervised L2graph (SeL.2graph) has two advantages: 1) Unlike
the classical dimension reduction methods such as principle component anal-
ysis, SeL.2graph can automatically determine the dimension of feature space.
This remarkably reduces the effort to find an optimal feature dimension for
a good performance; and 2) It fully exploits the prior knowledge carried by
the labeled samples and thus the obtained features are with higher discrim-
ination and compactness. Extensive experiments show that the proposed
method outperforms 7 subspace learning algorithms on 15 data sets with re-
spect to classification accuracy, computational efficiency, and robustness to
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noises and disguises.

Keywords:
Bio-inspired feature learning, automatic subspace learning, dimension
reduction, graph embedding.

1. Introduction

Like humans’ natural sensors, diverse artificial sensors such as cameras
capture huge amount of high-dimensional information every second. This
information is largely redundant in dimensionality and brings so-called curse-
of-dimension challenge to researches in machine intelligence. To solve this
problem, various dimension reduction or feature learning techniques have
been proposed, which are inspired by the working way of human’ brain.

Human’s perception system can efficiently and effectively perceive con-
stancy even though the raw sensory inputs are in flux. The biological stud-
ies [? ] characterize the working way of human’s perception as manifold
learning, i.e., the high-dimensional data probably reside on a lower dimen-
sional manifold and the manifold corresponds to the attractors in our brain [?
? ]. In the community of machine intelligence, the manifold can be regarded
as an invariant characteristic of data that remains unchanged in different
projection spaces.

The pioneer works in manifold learning with well-defined mathematic for-
mulations are locally linear embedding (LLE) [? |, ISOMAP [? ], and Lapla-
cian Eigenmaps [? ]. These methods map a given set of high-dimensional
data points into a low-dimensional space by preserving the geometric rela-
tions among data points. The geometric relations are always described as
a similarity graph of which each vertex denotes a data points and the edge
weight represents the similarity between two connected data points. Thus,
manifold learning is also called as graph embedding method [? |.

The main attraction of manifold learning is that it can handle linear in-
separable data even though the data are sampled from multiple subspaces.
One of the major problems is that it cannot handle the incremental data. To
solve this problem, some subspace learning methods have been proposed, for
example, neighborhood components analysis (NPE) [? ], locality preserving
projections (LPP) [? ], and their extensions [? 7 ? ]. Unlike traditional
manifold learning methods, subspace learning aims to learn a projection ma-
trix @ € R™ " instead of the low-dimensional features from a given data



set. After obtaining the projection matrix, the low-dimensional features are
obtained via z = ©Tx, where z € R™ is the low-dimensional feature and
x € R™ is the raw data input.

The key of subspace learning is identifying the geometric relations among
different data points, i.e., the construction of the similarity graph. A good
similarity graph should only retain the connections among intra-class data
points, i.e., only the data points with the same label are connected with
each other. Recently, the methods using reconstruction coefficients to build
a similarity graph have achieved impressive performance, including but not
limited to sparsity preserving projections (SPP) [? ], Llgraph [? |, low rank
representation (LRR) [? ], least square regression [? |, L2graph [? 7 |, and
their variants [? 7 7 7 |.

In these works, L2graph has achieved state-of-the-art performance in un-
supervised subspace learning and clustering. The theoretical analysis and
experimental studies [? 7 | have shown that L2graph can achieve a good
similarity graph even though the data set is grossly corrupted. Despite the
advantages of L2graph, there are two disadvantages in L2graph based sub-
space learning. First, L2graph is a unsupervised method, which does not
utilize the label information available in training data. Second, like other
methods such as NPE, L2graph needs to specify the dimension of feature
space. To find a optimal value for the feature dimension, most works have
to search all possible values, for example, from one to the dimension of input
(i.e., m). Clearly, such strategy is very time consuming, especially, in the
scenario of high-dimensional data.

To solve these two problems in L2graph, we proposed a semi-supervised
subspace learning method, namely, semi-supervised L2graph (Sel.2graph).
The method is inspired by the biological observations in [? |, more specifi-
cally, the layer 2/3 of rat visual cortex activates the same collection of cortical
columns in response to leftward and rightward drifting gratings (see Figs. 1(a)
and 1(b)). We refer to such a property as similar inputs having similar codes
(SISC) [? | and propose a mathematical formulation to the SISC by using
a variant of fisher criterion. Fig. 1 gives an example to illustrate our basic
idea. The contributions of this paper are summarized as follows:

e We propose a semi-supervised subspace learning method by enforcing
the similar inputs have the similar features. The label information is
used as the metric to determine whether a pair of samples are simi-
lar. Extensive experimental results show that SeL2graph outperforms
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Figure 1: Motivation and illustration of our basic idea. (a-b) the biological observation
reported in Ohki et al.’s work [? ]. It shows that the visual cortex of rate represents similar
inputs using similar codes (i.e., SISC), where the bigger circle denotes a cortical column
consisting of multiple neurons. The cortical column will be activated if one of the affiliated
neurouns gives a spike (with slide lines). (c) For a given sample (e.g., the diamond), L2graph
may use the samples from another subject (e.g., the circle) to represent it, where the dotted
lines in the circle denote unactivated columns and the solid lines denote activated columns.
By utilizing the SISC property, SeL.2graph could rescale the projection coefficients over
the circle to zeroes.

L2graph and other baseline methods with a considerable performance
margin;

e Unlike most dimension reduction methods such as principle component
analysis (PCA) and L2graph, Sel.2graph can automatically determine
the dimension of feature space. We prove that the feature dimension is
bounded by the number of subjects. This advantage will significantly
reduce the effort to tune the parameter;

e Sel.2graph is robust to the Gaussian noise, random pixel corruptions,
and various disguises over the face such as sunglasses.

Notations: we use lower-case bold letters to represent column vectors
and UPPER-CASE BOLD LETTERS to represent matrices. A7, AT,
and A~! denote the transpose, pseudo-inverse, and inverse of the matrix
A respectively. I denotes the identity matrix. A;; denotes an entry of the
matrix A. Table 1 summarizes some notations used throughout the paper.



Table 1: Some used notations.

Notations Definitions

X = [x1,X2," "+ ,X,] Training samples

X; € Rmxm™ The samples belonging to the i-th class
m The dimension of the raw data

n; The size of the i-th class

m’ The dimension of feature space

k The number of subjects

z; € R™ The low dimensional feature of x;

W e R™" The similarity graph

® ¢ R™™ The projection matrix

2. Related works

In this section, we briefly review two related topics, i.e., unsupervised and
semi-supervised subspace learning.

2.1. Unsupervised Subspace Learning

A variety of unsupervised subspace learning methods have been proposed
in recent years [? 7 7 7 7 7 7 7 7 7 7 7 ], and most of them can be
unified into the framework of graph embedding.

The most well-known dimension reduction method may be PCA which
aims to find a set of mutually orthogonal basis functions. If the data are
drawn from a single linear separable subspace, PCA can recovery the sub-
space structure and obtain a compact representation. In practice, however,
such conditions are hard to satisfy since most real world data are drawn from
the union of multiple subspaces and these subspaces are linear inseparable.

To overcome the shortcomings of PCA, a lot of methods have been pro-
posed, which use the reconstruction coefficient to build a similarity graph and
embed the graph from the original space into a low-dimensional one. In these
methods, different object functions have been proposed, leading to different
similarity graph. To build a similarity graph, LPP [? | uses the Euclidean
distance with the Heat kernel, NPE [? | uses locally linear reconstruction
coefficients, SPP [? ]| and Llgraph [? | use sparse representation [? ? 7 ?



? ], LRR [? | uses low rank representation, and L2graph [? 7 ] uses the
thresholding linear representation.

Unsupervised subspace learning methods only utilize the geometric infor-
mation and ignore the available supervised signals. When the adopted ge-
ometric metric cannot accurately describe the relations among data points,
the obtained features may be undesirable.

2.2. Semi-supervised Subspace Learning

Recently, some semi-supervised subspace learning methods have been pro-
posed, which integrate the label information with the geometric information
for achieving a discriminative representation.

The key problem of semi-supervised subspace learning is exploring how
to incorporate the label information into the projection space. There are two
popular criterions: label propagation [? | and fisher criterion [? |. Label
propagation assumes that the data points residing on the same manifold are
very likely to have the same label. Based on this assumption, label propaga-
tion first builds a similarity graph using the geometric measurement such as
the Euclidean distance; and then it propagates the labels from the labeled
points to the unlabeled data points and rescales the connections weights in
the graph. Under the framework of label propagation, some algorithms have
been proposed and impressive results are achieved [? 7 ]. Fisher criterion
aims to find directions on which the data points of different subjects (i.e.,
inter-class data points) are far from each other while enforcing data points
of the same subject (i.e., intra-class data points) to be close to each other.
Due to its simplicity and effectiveness, the fisher criterion has been used in
a lot of applications [? 2722722277277 ].

3. Semi-Supervised Subspace Learning with L2graph

In [? ? ], we proposed L2graph for robust subspace clustering and sub-
space learning. The method aims to solve the following optimization problem:

1
min §||xl — Xci||3+ M|cill3, s.t.elc; =0, (1)
where x; € R™ is a column vector of the training samples X € R™*", all
entries in e; are zeroes except the i-th entry is one, and c; € R" denotes the
self-expression of x; over X. The optimal solution of Eq. (1) is given by

ezTQXiei

* T
c =P | X'x;, —
' elPe; |’

(2)



where
P=(X"X+AI) ", (3)

Q = PX”. (4)

By proving that the coefficients with small values are the projection over
errors, the robustness of L2graph can be improved by performing a hard
thresholding operator H;(-) over cZ, i.e., ¢ = H;(ct), where H;(-) keeps k
largest entries in ¢} and returns the others to zeros.

After obtaining the reconstruction coefficients of the whole training set,
L2graph builds a similarity graph using the collection of CA;-k and embeds the
graph into a low-dimensional space. Note that, it is unnecessary to require
the similarity graph to be symmetric in our methods.

L2graph is a unsupervised method, which only considers the geometric
relations among data points and does not utilize the label information. Some
recent works have shown that the integration of geometric relations and label
information can significantly improve the performance of algorithms, for ex-
ample, semi-supervised discriminant analysis (SDA) [? ] is a semi-supervised
extension of LPP [? |, Discriminant SPP (DSPP) [? | is an extension of
SPP [?7 |].

To further improve the discrimination of L2graph, we propose a semi-
supervised extension of L2graph. The proposed method is inspired by a
biological observation, i.e., similar inputs have similar codes (see introduc-
tion). To formulate this property into our objective function, we propose the
following objective function,

min [|©7X OTXW|%, + trace (BS(Z) — 1T (Z)), (5)

where § and v are two balanced factors with nonnegative values and Z =
©7TX is the low-dimension representation of X. Note that, only 3 needs to
be specified by users and v can be automatically learned by our algorithm
(see Theorem 1).

The objective function Eq.(5) consists three terms that play different
roles: 1) the first term preserves the linear reconstruction relations among
different data points based on the scheme of manifold learning; 2) the second
term S(Z) aims at enforcing the data points with the same label are closed
each other in the projection space, i.e, the SISC property; and 3) the third
term J(Z) is a contrastive term involving the relations among different sub-
jects. This term is crucial. Simply minimizing the first two terms over the
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similar samples may lead to a collapsed solution as pointed out by Lecun et
al. [7].

Let z; be the low-dimensional feature of x;, we formulate the SISC prop-
erty as follows:

S(z) = Z D (2 —di)(z; —d)" | (6)
and .
J(Z) = mi(di — d)(di = )", (7)

where k denotes the number of subjects, Z; is the collection of features that
belong to the i-th subject, n; is the number of samples belonging to the i-th
subject, and d; and d are the mean vectors of Z; and Z, respectively. Note
that, the above formulations can be regarded as a variant of the fisher crite-
rion, where the classical fisher criterion is usually defined as the minimization
of the trace ratio trace(S(X))/trace(J(X)).

From Eqs.(6) and (7), we can find that S(Z) is the summation of the
Euclidean distance among intra-class features and J(Z) is the separability
among different subjects. Both J and S are defined in the feature space. In
short, we aim to minimize the distance among the features with the same la-
bel and simultaneously maximize the distances among the centers of different
subjects. Clearly, this formulation is based on the SISC principle, wherein
any two samples are “similar” if and only if they are with the same label
(ie., z; € Z;).

To solve Eq.(5), we have the following theorem:

Theorem 1. The optimal solution to Eq.(5) consists of m’ leading eigenvec-
tors of the following generalized Eigen decomposition problem

X((I ~W)(I - W) + 51— Q))XTG — X(Q— %HT)XT@, 8)

where Q is a n X n matriv whose entry §;; equals 1/ny if the samples x;
and x; belong to the k-th subject, ny denotes the size of the k-th subject,
1 is a n-dimensional vector with elements of 1, and vy is the corresponding
eigenvalue.



Proof. As z; = ©Tx;, S(Z) and J(Z) can be rewritten as the functions of
X, i.e.,

k
S(Z) = GTZ Z (xj — i) (x; — )" | ©
=0's(X)® (9)
and
J(Z)=0e" Z ni(p; — p) (i — )" ©
= @Tj_(X)@, (10)

where p; and p are the mean vectors of X; and X, respectively. S(X) can
be rewritten as follows:

SX) =Y D (x5 — i) (x5 — )"

=1 XjEX'
=3T3 )
=1 XJGX
k 1
=y X1-—1,1)X] (11)
° n;

where 1; is a n;-dimensional vector with the elements of 1.
Let 2 € R™" be a symmetric matrix and its entry £2;; is defined as

follows:
1
— if x; and x; belong to the k-th subject

0 otherwise.

Then, we have
S(X) = X(I-2)X”. (13)

Similarly, we have

J(X)=X(Q - 511T)XT, (14)



Clearly, both §(X) and J(X) are symmetric matrices. Denoting
L=]0"X - 0"XW|} + trace(BS(Z) — 7T (Z)), (15)
it gives that
o _
00
Substituting Eq.(13)—(14) into Eq.(16) and letting 95 = 0, we have

2X(I - W)(I - W)'XTO +285(X)0 — 277 (X)®. (16)

X((I ~W)(I - W)+ B(I - Q))XTG — X( - %11T)XT® (17)
as desired. O

Almost all the subspace learning methods have also confronted with the
parameter selection problem, especially, it is hard to determine the dimension
of feature space (i.e., m’). Thus, most works solve this problem by experi-
mentally tuning all possible values of m’. Clearly, this is very time costing
in practice. In this paper, we will show that our method can automatically
determine the value of m’ with the following theoretical result:

Corollary 1. Suppose the data set X is drawn from k subspaces, the feature
dimension m’ is bounded by the number of subjects, i.e.,

m' < k. (18)

Proof. Without loss of generality, we assume that the data X have been
preprocessed by subtracting the mean vector from all samples. As a result,
i = 0. By Theorem 1, we can find that the optimal solution to Eq.(5) will
consist of m’ leading eigenvectors of the following generalized Eigen decom-
position problem:

X((I ~W)(I - W)+ B(I— Q))XTG — 7 XQXTO. (19)

Moreover, we assume X is sorted according to its labels; i.e., X = [Xq, Xy, - -

Thus, € will be a block-diagonal matrix in the form of

Q 0 --- 0
0 Q -~ 0
0 --- 0

10
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Figure 2: Eigenvalues of Eq.(10). A subset of the AR database distributed 100 subjects
are used. The left y-axis is the value of the i-th eigenvalue and the right one is the
accumulated energy of eigenvalues.

where the entries of the sub-matrix €2; equal n; and n; is the number of the
samples belonging to the i-th subject.

Therefore, the rank of €2 is k£ and thus Eq.(19) has k nonzero eigenvalues
at most, which gives the result m’ < k. O

To verify the correctness of our theoretical result, we carry out experi-
ments by using 700 clean AR images [? ] sampled from 100 individuals.
Figure 2 shows all the eigenvalues of Eq.(19). One can find that there are
only 100 nonzero eigenvalues, which is matching with the ground truth and
our theoretical result.

Algorithm 1 summarizes the proposed method. In Steps 1-4, SeL.2graph
computes the thresholding linear reconstruction coefficients as the geometric
information. In Steps 56, the method learns a projection matrix by enforcing
the low-dimensional features to satisfy the SISC property.

4. Experimental Results

In this section, we investigate the performance of Sel.2graph using 15
different data sets, 7 subspace learning algorithms, and 3 different classi-
fiers. We mainly consider the performance of SeL2graph with respect to
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Algorithm 1 Semi-supervised Subspace Learning with L2-Graph

Input: A given data set X = {x;}{_;, a new coming datum y € span{X},
the regularization parameter A, the thresholding parameter k£, and the
discriminative parameter § = 0.1.

1: Calculate P and Q as in (3) and (4), and store them.

2: For each point x;, obtain its representation c¢; via (2).

3: For each c;, eliminate the effect of errors in the projection space via
¢; = H;(c;), where the hard thresholding operator H; (c;) keeps k largest
entries in ¢; and zeroizes the others.

4: Construct a similarity graph by W,; = |c;;| + |cj;| and normalize each
column of W to have a unit ¢,-norm, where c;; is the jth entry of ¢;.

5: Build the matrix © € R™*" based on the label information as in Eq.(12).

6: Calculate the projection matrix @ € R™** that consists of k leading
eigenvectors of Eq.(8) or Eq.(19).
Output: The projection matrix ® and the low-dimensional representation
of y (ie., z = 0OTy).

three aspects: 1) accuracy, 2) computational efficiency, and 3) robustness to
noises and real disguises. The code of our method can be downloaded from
http://www.machineilab.org/users/pengxi/.

4.1. Ezxperimental Setting and The Used Data Sets

We compare Sel.2graph with seven well-known subspace learning methods
including LPP [? |, NPE [? |, SPP [? | or called Llgraph [? |, LRR [? |,
L2graph [? 7 |, SDA [? |, and DSPP [? |. We download the codes of all
the baseline algorithms except SPP and DSPP from the authors’ websites.
SPP and DSPP are based on sparse representation, and the original codes
are based the CVX package [? | which is very inefficient. To accelerate
the computing speed of SPP and DSPP, we implement them using a faster
¢y-solver (i.e., the Homotopy algorithm [? ]).

After extracting the low-dimensional features using the evaluated sub-
space learning methods, we perform classifications over the features with
three classifiers, i.e., sparse representation based classifier (SRC) [? |, sup-
port vector machine with linear kernel (SVM) [? ], and the nearest neighbor
classifier (NN).

For fair comparisons, we tune the parameters of all the evaluated methods

12
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Table 2: The used databases. s and n; denote the number of subjects and the number of
images for each group.

Databases k n; Original Size = Downsize
AR1 100 14 165 x 120 55 x 40
AR2 100 12 165 x 120 55 x 40
AR3 100 12 165 x 120 55 x 40
Yale 15 11 32 x 32 32 x 32
ExYaleB 38 58 192 x 168 54 x 48
MPIE-S1 249 14 100 x 82 55 x 40
MPIE-S2 203 10 100 x 82 55 x 40
MPIE-S3 164 10 100 x 82 55 x 40
MPIE-S4 176 10 100 x 82 55 x 40
USPS 10 1100 16 x 16 16 x 16
FERET 200 7 80 x 80 80 x 80

for achieving their best performance and report the mean accuracy and time
cost in 10 repeating tests. The unsupervised subspace learning methods
and its semi-supervised extensions have shared the same tuned parameters,
for example, the parameter A of Sel.2graph and L2graph are with the same
value. Moreover, we fix the dimension of feature space using the number of
subjects. This strategy not only avoids the time cost to identify the optimal
feature dimension, but also provides a fair measurement to the compactness
of features.

The used data sets include three subsets of AR facial images [? ], the Yale
facial database (Yale) [? |, the Extended Yale facial database B (ExYaleB) [?
], four sessions of CMU Multiple PIE (MPIE) [? |, the USPS handwritten
digital database', and the FERET facial images [? ]. Table 2 gives an
overview on the used data sets of which some data sets are downsized for
computational efficiency.

4.2. The Influence of Parameters

In this section, we investigate the performance of Sel.2graph using a sub-
set of the Extended Yale database B. Sel.2graph has three user specified
parameters, i.e., the regularization parameter A\, the thresholding parameter
l%, and the discriminant term parameter 5. In each test, we change the value
of one of these three parameters and report the mean classification accuracy

thttp://www.cs.nyu.edu/ roweis/data.html.
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Figure 3: The influence of different parameters of SeL.2graph on the Extend Yale database
B, where the training samples and the testing samples are with the equal size.

and time cost.
Figure 3 reports the results from which we have the following observations:

e The parameter A has little influence on the classification accuracy. The
recognition rates of SRC, SVM, and NN almost remain unchanged. The
accuracy of SRC ranges from 97.46% to 97.64%, that of SVM ranges
from 90.29% to 91.47%, and that of NN ranges from 95.55% to 95.83%;

e With the increase of k and B, SVM achieves a lower accuracy. In most
cases, SRC achieves the highest recognition rates, but it is the most
inefficient. In general, SVM and NN are two times at least faster than
SRC;

e The NN classifier finds a good balance between the computational ef-
ficiency and recognition accuracy.

4.3. Performance with Increasing Training Data
In this section, we report the performance of Sel.2graph with increasing
labeled samples. In the experiment, we use two facial image databases, i.e.,

14
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Figure 4: The performance of SeL.2graph with increasing training samples. On the x-axis,
some sample images are illustrated.

ARI1 and Yale.

AR1 consists of 1400 clean images that are uniformly sampled from 100
individuals (50 males and 50 females). In the experiment, we randomly select
3,4,5,6,7,8, 9,10, and 11 images from each subject for training and use
the rest of images for testing.

The Yale data set contains of 165 images over 15 subjects. Each subject
includes 11 samples that are different in facial expression or configuration:
center-light, wearing glasses, happy, left-light, without glasses, normal, right-
light, sad, sleepy, surprised, and wink. We follow Cai et al.’s testing protocol
by using their data partitions. More specifically, they randomly selected p
samples as training set and used the rest of database as the testing set, where
p increases from 2 to 8 with an interval of 1. For each given p, there are 50
randomly splits.

Fig.4 shows that Sel.2graph with three classifiers perform better when
more labeled sample are available. Moreover, the SRC and the NN are su-
perior to the SVM in the tests.

4.4. Performance with Different Classifiers

In this section, we compare Sel.2graph with seven popular subspace learn-
ing methods using four subsets of MPIE that captured under four different
sessions. In the experiments, we use all the frontal faces with 14 illumina-
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(a) MPIE-S1 (b) MPIE-S2 ) MPIE-S3 ) MPIE-S4

Figure 5: Sample images from four sessions of MPIE.

tions?, where Fig. 5 shows some samples. On each data set, we randomly
split 1t into two parts with the equal size for training and testing. Tables 37
report the results, from which we can find that:

e On all the used data sets, Sel.2graph achieves the highest recognition
rates, while keeping a competitive computational efficiency. For exam-
ple, SeL.2graph is about 8.69 times faster than DSPP on the MPIE-S1,
and its accuracy is 1.34% higher than that of DSPP when the SRC is
used;

e With different subspace learning methods, the SRC classifier usually
achieves the highest recognition rate and the NN is the second best
classifier. However, the SRC is significantly slower than the NN and
the SVM. On MPIE-S2 and MPIE-S4, SDA, DSPP, and Sel.2graph
achieve the accuracy of 100% with the SRC;

e The label information remarkably improves the performance of feature
learning methods. For example, Sel.2graph (semi-supervised version)
outperforms L2graph (unsupervised version) with a performance mar-
gin of 27.48%, 2.86%, 4.52%, and 1.48% on these four data sets when
the NN is used.

e The computational efficiency of L2graph and Sel.2graph are very close.
Although these two methods solve two different Eigen decomposition
problems, the computational complexity of these two problems are the
same.

16



Table 3: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with three classifiers on the MPIE-S1 data set, where m’ = 249.

Classifiers SRC SVM NN
Algorithms Accuracy Time | Accuracy Time | Accuracy Time
LPP 29.43 59.78 17.97 13.48 25.40 4.46
NPE 28.86 61.15 15.16 25.34 23.24 9.53
SPP 56.58 1101.88 16.71 875.77 52.13 822.43
LRR 61.44 62.38 25.59 532.86 61.25 9.52
L2graph 70.28 97.51 25.07 63.57 71.60 47.48
SDA 99.13 62.11 99.20 7.72 97.31 4.79
DSPP 98.60 822.98 81.81 615.05 97.02 611.27
Semil.2graph 99.94 94.66 99.66 49.31 99.08 45.11

Table 4: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with three classifiers on the MPIE-S2 data set, where m’ = 203.

Classifiers SRC SVM NN
Algorithms Accuracy Time | Accuracy Time | Accuracy Time
LPP 43.15 29.17 19.11 5.09 26.11 1.31
NPE 43.35 27.12 12.02 7.82 27.49 2.73
SPP 77.59 546.89 56.80 420.38 68.87 372.39
LRR 85.52 26.03 71.38 131.72 89.67 2.46
L2graph 99.21 36.06 91.72 15.43 97.14 11.89
SDA 100.00 29.91 98.41 4.61 99.80 3.67
DSPP 100.00 349.70 94.95 247.61 96.95 246.45
Semil.2graph 100.00 34.72 100.00 14.88 100.00 13.69

4.5. Subspace Learning on Clean Images

In this section, we investigate the performance of the tested subspace
learning methods on three facial images data sets and one handwritten digital
data set (Fig. 6 illustrates some sample images). For all the used data sets
except the FERET, we use a half of samples per subject for training and the
rest of the samples for testing. In other words, both the training sets and
testing sets include 700 AR1 samples, 1102 ExYaleB samples, or 5500 USPS
images. For FERET, we use 800 samples for training and 600 samples for
testing. Table 7 reports our results from which we can find that:

e Sel.2graph outperforms the other testing methods on all the tests. It
finds a good tradeoff between recognition rate and computational effi-
ciency. The difference in accuracy between Sel.2graph and the baseline
algorithms ranges from +1.43% to +50% on AR1, +2.64% to +62.71%

2j]luminations: 0,1,3,4,6,7,8,11,13,14,16,17,18,19.
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Table 5: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with three classifiers on the MPIE-S3 data set, where m’' = 164.

Classifiers SRC SVM NN
Algorithms Accuracy Time | Accuracy Time | Accuracy Time
LPP 61.83 26.35 31.95 2.77 32.68 0.94
NPE 76.10 32.24 84.02 10.37 53.78 9.67
SPP 83.66 462.11 76.59 313.12 67.68 292.64
LRR 90.49 18.68 81.10 71.30 83.78 1.47
L2graph 99.02 24.87 90.98 9.55 95.24 6.88
SDA 99.01 23.07 98.88 3.76 98.39 3.29
DSPP 98.97 268.28 93.29 171.09 94.63 170.34
Semil.2graph 99.88 24.92 99.88 10.11 99.76 9.33

Table 6: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with three classifiers on the MPIE-S4 data set, where m’ = 176.

Classifiers SRC SVM NN
Algorithms Accuracy Time | Accuracy Time | Accuracy Time
LPP 50.80 26.20 20.68 3.46 30.57 0.96
NPE 48.75 23.56 20.45 5.23 34.43 2.07
SPP 66.36 660.30 46.02 421.50 51.59 388.92
LRR 88.86 19.75 81.93 87.49 82.50 1.90
L2graph 99.77 27.03 92.61 10.12 98.52 8.12
SDA 100.00 23.84 98.93 3.90 99.31 3.25
DSPP 100.00 281.90 98.41 191.83 98.07 191.04
Semil.2graph 100.00 29.22 100.00 12.33 100.00 11.45

on the extended Yale database B, +1.56% to +61.67% , and +12.50%
to +24.00% on FERET

e The integration of label information and geometric information remark-
ably improves the discrimination of L2graph. More specifically, the
performance gain in recognition rate between Sel.2graph and L2graph
on these four data sets are +21.43%, +31.58, +1.52%, and +14.17%,
respectively. Note that, L2graph can achieve higher accuracy if we use
more features (e.g., 300) as shown in our previous work [? |.

4.6. Subspace Learning on Corrupted Facial Images

In this section, we investigate the robustness of Sel.2graph against two
noises using the ExYaleB data set. The noises include the white Gaussian
noise (additive noise) and random pixel corruption (non-additive noise) [? |.
Fig. 7 shows some sample images.

In the experiments, we randomly choose a half of samples (29 images per
subject) to corrupt using these two noises. Specifically, we add the white
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Table 7: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with the nearest neighbor classifier. m’ denotes the feature dimension.

Data sets AR1 (m’ = 100) ExYaleB (m’ = 38) USPS (m/ = 10) FERET (m/ = 200)
Algorithms | Accuracy Time | Accuracy Time | Accuracy Time | Accuracy Time
LPP 46.86 0.75 33.03 1.88 89.87 2.43 14.67 2.75
NPE 74.71 9.38 85.66 26.66 89.80 7.74 17.83 3.07
SPP 53.71 250.09 21.51 486.02 89.71 185.93 22.17 668.41
LRR 60.57 12.61 40.83 3.37 61.67 0.88 23.33 1.69
L2graph 75.43 2.45 64.16 18.40 90.17 610.21 24.50 7.05
SDA 95.43 3.01 93.10 4.88 75.62 3.08 18.83 45.08
SemiSPP 89.00 148.26 92.20 354.01 90.13 101.23 26.17 668.41
SeL.2graph 96.86 10.52 95.74 24.60 91.69 618.09 38.67 63.95

W

et

N? S 32140

Figure 6: The used clean image databases. From top to bottom: FERET, the extended
Yale database B, and USPS.

Gaussian noise into the sampled data y via y = y + pe, where y € [0 255],
p is the corruption ratio, and e denotes the noise following the standard
normal distribution. For random pixel corruption, we replace the value of
a percentage of pixels randomly selected from the image with the values
following a uniform distribution over [0, paz], Where ppq. is the largest pixel
value of y. After adding the noises into the images, we randomly divide the
data into training and testing sets with equal size. In other words, both the
training data and testing data probably contain corrupted samples. Table 8
shows that:

e Sel.2graph is more robust than all the evaluated methods by a con-
siderable performance margin. It is 9.25%, 9.98%, 11.07%, and 0.27%
higher than the second best algorithms on these four data sets;

e The semi-supervised methods (i.e., SDA, DSPP, and Sel.2graph) are
more robust than the unsupervised methods (i.e., LPP, NPE, SPP,
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Table 8: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with the nearest neighbor classifier, where 38 features are extracted.
RPC is the short of random pixel corruption. The numbers in the parentheses are the

values of the noise level p.

Corruptions | Gaussian Noise (10%) | Gaussian Noise (30%) RPC (10%) RPC (30%)
Algorithms | Accuracy Time | Accuracy Time | Accuracy Time | Accuracy Time
LPP 39.47 1.30 28.58 1.60 28.58 1.60 19.69 1.60
NPE 30.22 291 24.05 2.81 24.05 2.81 17.70 2.75
SPP 29.05 549.16 16.52 526.11 17.60 512.81 14.79 490.78
LRR 33.97 1.63 23.97 1.63 28.13 2.48 12.75 2.40
L2graph 46.82 18.18 34.94 18.20 31.58 18.20 28.31 18.20
SDA 79.13 3.26 57.26 2.90 60.25 3.09 49.82 3.19
DSPP 77.59 339.47 66.15 337.73 59.26 348.61 53.45 343.67
SeL2graph 88.38 28.10 76.13 27.45 71.32 26.46 53.72 5.88

(a) The Gaussian Corruption.

(b) Random Pixel Corruption.

Figure 7: Sample images from the corrupted ExYaleB images. From left to right in each
subfigure, the corruption rates are 0%, 10%, and 30%, respectively.

LRR, and L2graph);

e The non-additive noise (i.e., the random pixel corruption) is more chal-
lenging than the additive noise (i.e., the Gaussian noise). All the tested
methods perform better in the former corruption. Moreover, with the
increase of the corruption level, all the evaluated methods achieve a

lower accuracy.

4.7. Subspace Learning on Disquised Facial Images

In this section, we evaluate the robustness of SeL2graph to the real dis-
guises using two subsets of the AR database, i.e., AR2 and AR3 (see Fig. 8).
Both AR2 and AR3 consist of 600 clean and 600 disguised facial images.
The difference between them is that the AR2 images are disguised by sun-
glasses and the AR3 images are disguised by scarves. The occluded rates of
these two different disguises are about 20% and 40%, respectively. Similar
to the tests on the corrupted images, both the training and testing set are
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Table 9: The classification accuracy (%) and time cost (seconds) of different subspace
learning algorithms with the nearest neighbor classifier, where 100 features are extracted.

Disguises AR2 (Glasses) AR3 (Scarves)
Algorithms | Accuracy Time | Accuracy

LPP 24.50 0.54 19.83 0.56
NPE 38.00 8.15 27.00 9.29
SPP 14.79 490.78 12.50 187.40
LRR 49.04 2.45 50.17 0.88
L2graph 56.33 2.85 57.83 2.84
SDA 88.50 3.01 87.83 3.32
DSPP 76.83 116.50 80.17 117.03
SeL2graph 91.00 8.77 92.00 10.88

Figure 8: Some sample images from AR2 (disguised by sunglasses) and AR3 (disguised by
scarves).

with equal size and probably contain disguised samples. Table 9 reports the
comparisons from which we have the following observations:

e Sel.2graph is 2.5% and 4.17% at least higher than the other tested
methods on AR2 and ARS3, respectively. Moreover, the recognition
rates achieved by all the tested methods are very close even though
the occluded rates are largely different in these two data sets. This
verifies a claim in face recognition, i.e., eye and chin are with different
discrimination;

e The semi-supervised methods again show their effectiveness. The worst
semi-supervised method (DSPP) outperforms the best unsupervised
method (L2graph) with the accuracy gain of 20.50% and 22.34% on
these two different disguises;

e SPP and DSPP are very inefficient because they both require solving
an {;-minimization problem whose computational complexity is pro-
portional to the cube of the data size at least.
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5. Conclusion

In this paper, we proposed a semi-supervised subspace learning method,
i.e., SeL.2graph. The method is motivated by the biological observation of
similar inputs having similar codes. In our objective function, this property
is mathematically formulated by minimizing the Euclidean distance among
intra-class data points and maximizing the Euclidean distance among the
centers different subjects. Extensive experimental studies have shown the
effectiveness, robustness, and computational efficiency of our method.

There are no perfect algorithm and the Sel.2graph is not an exception.
The objective function of Sel.2graph consists of three terms of which the last
two terms are with a good biological interpretation. However, the first term
is designed based on the scheme in machine learning and computer vision,
which reconstructs the input using the linear combination of a given data
set. Although such scheme has shown the effectiveness in practice and good
intuition in mathematics, it lacks interpretation in biology. Therefore, some
works may be conducted to fill this gap in future.
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