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Structured AutoEncoders for Subspace Clustering

Xi Peng

Abstract—Existing subspace clustering methods typically
employ shallow models to estimate underlying subspaces of
unlabeled data points and cluster them into corresponding
groups. However, due to the limited representative capacity of
the employed shallow models, those methods may fail in handling
realistic data without the linear subspace structure. To address
this issue, we propose a novel subspace clustering approach
by introducing a new deep model—Structured AutoEncoder
(StructAE). The StructAE learns a set of explicit transformations
to progressively map input data points into nonlinear latent
spaces while preserving the local and global subspace structure.
In particular, to preserve local structure, the StructAE learns
representations for each data point by minimizing reconstruc-
tion error with respect to itself. To preserve global structure,
the StructAE incorporates a prior structured information by
encouraging the learned representation to preserve specified
reconstruction patterns over the entire data set. To the best of
our knowledge, StructAE is one of the first deep subspace clus-
tering approaches. Extensive experiments show that the proposed
StructAE significantly outperforms 15 state-of-the-art subspace
clustering approaches in terms of five evaluation metrics.

Index Terms— Unsupervised deep learning, locality preserva-
tion, globality preservation, spectral clustering.

I. INTRODUCTION

UBSPACE clustering aims at seeking a collection of
implicit subspaces to fit a given unlabeled data set and
segmenting them into different groups [1]. During past years,
spectral clustering based approaches [2]-[4] have achieved
remarkable performance, which are conducted in two steps:
1) building an affinity matrix (i.e., similarity graph) C to
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describe the affinity of data points, where C;; quantizes the
closeness between data points x; and x;; 2) clustering data
by grouping the eigenvectors of L = D 2AD 3. Here, L is
termed as graph Laplacian. The diagonal matrix D is with
the entry D;; = Zj A;jj and A = |C| + ICT|. In general,
the performance of these approaches critically depends on the
quality of A.

Although those subspace clustering approaches [5]-[21]
have achieved encouraging performance, we found that they
may suffer from some limitations as follows. First, most of
existing algorithms strive to build the affinity matrix A but
ignore obtaining a good representation using A. Actually,
almost all of them directly use top eigenvectors (w.r.t. largest
eigenvalues) of L as the low-dimensional data representa-
tion. In essence, such a method is exactly Laplacian Eigen-
map (LE) [22]. In other words, those approaches achieve sub-
space clustering through 1) building an affinity matrix using
the self-expression, 2) getting low dimensional representations
of X by performing LE on the affinity matrix, and 3) obtaining
clustering membership by conducting the k-means algorithm
on the representations. Until now, it is still an open and
challenging issue whether there is a better way to embed
the affinity matrix into low-dimensional spaces and discover
the clustering membership therein. The second limitation can
attribute to the linearity assumption adopted by those methods.
The assumption leads to failure in handling data that cannot
be linearly reconstructed. To overcome this disadvantage, some
kernel methods have been proposed, e.g., kernel low rank rep-
resentation (KLRR) [23] and kernel sparse subspace clustering
(KSSC) [24]. They obtain results by first mapping the input
into a pre-specified kernel space and then performing subspace
clustering therein. One disadvantage of these kernel subspace
clustering methods is that their performance heavily depends
on the used kernel function. In practice, however, it remains
unclear to choose the appropriate kernel function. The third
limitation is that those methods will suffer from out-of-sample
and large scale clustering issues because they have to perform
general eigen-decomposition over L of the whole data set.
To solve these issue, out-of-sample and large scale extensions
are required [19], usually at the cost of clustering quality.

From the above, ones could conclude that data represen-
tation plays an important role in subspace clustering. Moti-
vated by the huge success achieved by deep representation
learning [25]-[29], we propose a new deep subspace clus-
tering method, namely, Structured AutoEncoder (StructAE)
to overcome the aforementioned limitations. The proposed
method achieves subspace clustering through calculating the
structured reconstruction relation from raw data, training a
neural network with the formulation of self-supervision based
locality and self-expression based globality, and grouping the
compact representation given by the propose method.
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Fig. 1. The architectures of subspace clustering approaches and StructAE. In (a), HO denotes inputs, C® s the structure prior calculated based on
HO and HM corresponds to the output of the m-th layer of our neural network, where m = 1,2,---, M. (b) a symbolic illustration, where the locality
denotes the minimization of the reconstruction error between inputs and H®M) | and the globality is achieved by minimizing the reconstruction error of

u O
H? over the whole data set with C©).

Fig. 1 illustrates the basic idea of StructAE, which shows
that StructAE significantly differs from existing subspace
clustering methods. More specifically, 1) StructAE directly
obtains data representation of X rather than relying on the
affinity matrix A; 2) StructAE is a multi-layer nonlinear model
which gives a stronger ability to capture the nonlinearity of
data; 3) Comparing with the stacked AutoEncoder (SAE),
StructAE not only incorporates the locality for reconstructing
each data point, but also considers the structured globality
w.rt. the entire data set; 4) Comparing with kernel-based
approaches, StructAE offers explicit transformations and a
better scalability because it does not load the entire data set
into the memory; 5) StructAE is compatible with both the
k-means algorithm and most of existing subspace clustering
approaches. When performing k-means on the representation
learned by StructAE, we theoretically show that under some
mild conditions, StructAE performs like the spectral cluster-
ing. When combined with subspace clustering, StructAE can
be regarded as a latent subspace clustering method like [30].

The paper is a substantial extension of our conference
work [31] with further improvements given below. First,
we design a new algorithm by incorporating £>-norm based
structure prior besides ¢1-norm based sparsity. Second,
we present theoretical analysis to show the connections of
our StructAE with some existing methods including spectral
clustering [3], sparse subspace clustering (SSC) [7], low rank
representation (LRR) [8], and their variants. Third, the exper-
imental evaluations are totally different, which involve new
baselines and new data sets. More specifically, in the con-
ference version, YaleB and COIL20 with DSIFT and HOG
features are used for comparisons. In contrast, this paper
carries out experiments using YaleB, COIL20, and mnist with
SDSIFT and LPQ features, as well as CIFAR10 with these
four features and BF0502 raw data. Fourth, this paper presents
the 2D visualization to show that our method could learn a
distinct and compact representation which further boost the
clustering performance. Fifth, besides the depth, we also inves-
tigate the influence of width and parameters of our method.
Sixth, we evaluate the time cost of our method for training
and inference for extensive investigations.

Notations: Lower-case bold letters denote column vectors
and UPPER-CASE BOLD ONES denote matrices, unless

otherwise stated. AT and A;; denote the transpose and an
element of the matrix A, and I denotes the identity matrix.

II. RELATED WORK

In recent years, many subspace clustering works [5]-[14],
[16], [23], [24], [30], [32], [33] have devoted to building a high
quality affinity matrix by using self-expression of the inputs
X € RY*". More specifically, these algorithms represent X as
its linear combination by:

1
min 2 |X — XC|l3 + AR(C), (1)

where d is the dimension of X, n is the number of data
points, || - || denotes the Frobenius norm, C € R™*" denotes
the self-expression of X, and R(C) denotes a desirable prior
on C. Those methods differ from each other in the choice
of R(C). For example, LRR [8], SSC [7], and least square
regression (LSR) [6], [10], [34] assume that C is low rank,
sparse, and dense, respectively. Accordingly, nuclear-, {;-,
and Frobenius-norm are formulated into R(:). Once getting
C, the affinity matrix is obtained via A = |C| 4+ |CT]
and clustering membership is achieved by applying spectral
clustering [3] over A.

To further boost the performance of subspace clustering,
we propose a deep neural network based method. Our work
is complementary to existing works in deep learning and
subspace clustering, since it incorporates the merits (i.e. struc-
ture prior) of subspace clustering into deep neural network.
Thus, it is well expected that StructAE can obtain satisfactory
results in clustering unlabeled data. Unlike existing subspace
clustering approaches, the proposed StructAE learns a set
of nonlinear transformations to obtain the low-dimensional
representation using a neural network instead of the manifold
learning (e.g., LE). Benefiting from stronger nonlinearity and
representational capacity of deep neural networks, our method
could achieve a better clustering performance. Comparing
with existing deep learning methods [35]-[37], the proposed
StructAE is a novel neural network for subspace clustering by
preserving both globality and locality of the data set. To be
exact, StructAE guarantees the globality by minimizing the
reconstruction error of embedding structure prior, and the
locality by minimizing the reconstruction error between each
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data point and the reconstruction given by our neural network.
One of pioneer works in deep subspace clustering is [38]
which is remarkably different from our method. In brief,
our method uses the structured globality including affinity
(e.g., sparsity) as a prior to learn a compact representation,
whereas [38] learns the sparsity in the latent space.

III. STRUCTURED AUTOENCODERS FOR
SUBSPACE CLUSTERING

StructAE consists of following three steps: first calculating
the structure prior from inputs, then training a neural network
to project the input into another space, and finally clustering
the representation into multiple subspaces. In this section,
we will first elaborate on the detail of StructAE for these three
steps and then introduce how to optimize the StructAE model.
Moreover, we also give some theoretical analysis to show the
connections between StructAE and existing methods.

A. The Deep Model of StructAE

StructAE employs a neural network (M + 1 layers) to
perform M nonlinear transformations, where the first layer
corresponds to input, the first M /2 hidden layers perform as
an encoder to learn a compact representation and the last M /2
layers perform as a decoder to reconstruct the input X. For ease
of presentation, some of the used notations are defined given
below. We use hgo) =x; € R? to denote a data point and

(m) (m=1) dn
h{" = g(W™h" " + p™) e R &)

to denote the output of the m-th layer. Here, m = 1,2,--- , M
is the index of layer, d,, is the number of neurons of the corre-
sponding layer, and g(-) denotes the used activation function.

For a given input x;, the corresponding reconstruction and low-

M
dimensional representation are hi(M) and hl.( 2 ), respectively.

Moreover, for the data set X = [xi,...,X,] € R4*n,
the corresponding reconstructions are:

HM = ™ p™ ... p(y, 3)

StructAE aims to simultaneously preserve self-supervision
based locality J; (i.e. data reconstruction) and self-expression
based globality /> (i.e. the global structure prior C.') in
learning representation. With the aforementioned definitions,
we propose the following objective function:

min SIX — HOVE + S - e
Ji, Locality J>2, Globality
A2 J 2 (m) 2
52 (W13 + b 3), @)
-

J3, Regularization

where A1 and A, are positive tradeoff parameters.

We design the terms {7; }?:1 for different goals. To be exact,
the first term J; aims to keep the locality by minimizing
the errors between the input X and the reconstruction H).

'In this paper, we mainly investigate £1-norm based sparsity and £|-norm
based self-expression prior as calculated in Eq. (5)—(6).
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Clearly, each data point actually performs as its supervisor to
learn a compact representation H. J> is derived from the
manifold learning [39] which assumes that some properties on
manifold are invariant to different projection spaces.” Based on
the assumption, ones could learn representation by preserving
the specific property from input space into another space.
Clearly, the key of manifold learning is to seek the invariance.
In this paper, the reconstruction relationship (i.e., the structure
prior) is regarded as a type of invariance, which has shown
effectiveness in [7], [8], and [40]. In particular, we adopt two
popular cases, i.e., the sparsity prior by

n
i = Y¢i |3+ Alc;
min ; lIx; 15 + Alleillt
s.t. ¢jj =0, 5)

and the non-sparse prior by

n
min ;nxi —Ycill3 + Alleill2
1=
s.t. ¢;j =0, (6)

where || - ||; and | - ||2 denote £- and ¢,-norm, and the corre-
sponding StructAE is denoted by StructAE-L1 and StructAE-
L2, respectively. ¢;; denotes to the i-th element of the vector ¢;,
and the constraint is used to avoid degenerated solutions. Note
that the £>-norm based reconstruction coefficient is provable
to give low-rank property [40], and it is more computation-
ally efficient than the nuclear-norm based objective function.
In Eq.(6), Y denotes a dictionary, which can be pre-determined
using dictionary learning methods or simply specified to be the
data set itself. For simplicity, we directly let Y = X in this
paper.

With the optimal solution of Eq. (5) or Eq. (6), J> guar-
antees the globality since the reconstruction relation of using
the entire data set is kept from input space into the hidden
representation. [J3 is a popular regularization, which is used
to avoid over-fitting. It should be pointed out that, the objective
function Eq. (4) with the nonlinear function will not give the
trivial solution W = 0 and W” = I thanks to the existence
of J1 and the updating rule Eq. (10)—(13), where 0 and I
denote an all-zero matrix and identity matrix, respectively.
Clearly, either all-zero matrix or identity matrix will not give
the minimal 7.

StructAE enforces the learned representation to keep the
global structure prior and simultaneously uses the input as the
supervisor to learn a compact data representation. These global
and local structures are integrated into the data representation,
and thus resulting in favorable clustering results.

B. Optimization

In this subsection, we show how efficiently optimize our
StructAE using the stochastic sub-gradient descent algorithm
(SGD). For convenience, Eq. (4) is rewritten in the following

2Note that, it is also feasible and quite easy to formulate the graph Laplacian
into J3 to utilize the local consistency based on pairwise distance.
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sample-wise form:

n

1 (M M
J=352 (nx,- —h™ 3+ 4y 2 — B ’c,-n%)

i=1

M
A2
+ 2230 (Wi + 3) . )
m=1
Recall the definition of h;m) in Eq. (2) and use the back-

propagation algorithm, the sub-gradients of Eq. (7) w.r.t. W)
and b is as follows:

0 -

prs o {n) = (A<'") +/11A(’”)) BT 4 2w (8)
oJ

o = A AT 4 aob, ©)

where A is given by:

[— (xi - hl.(M)) 0d@"), m=M (10)
(WHD)T A+ & /(2™ otherwise
and A is defined by
WD A © ¢/ (@™, m=1,.-, MT_z
(hfﬂzl) - H(%)Ci) 0g@?), m= % an
N MLEE R

Here © is the element-wise multiplication, g’(-) denotes the
derivative of the activation g(-), hl.(o) = x;, and zl(m) =
WRM=D 4 pOD)
1
Using the SGD algorithm, {W") b(’”)}n"f=1 are updated as
follows:

oJ
(m) — WO _
W= W — s (12)
oJ
(m) — pm) _
b = b — = (13)

Algorithm 1 summarizes the optimization procedure of our
method.

C. Implementation Details

In our implementation, g(-) = tanh(-) is used as the
activation function. To initialize our neural network, the pre-
training and fine-tuning strategy [25] is adopted. More specif-
ically, the entire neural network is decomposed into multiple
smaller ones and then lay-wise pre-training is performed on
these single hidden layer network. In our experiments, for
a five-layer neural network 300-200-150-200-300, we first
train the shallow networks of 300-200-300 and 200-150-200,
respectively. After that, we use the pretrained weights to
initialize the deeper network.

It should be pointed out that the fully connected layers
in StructAEs could be replaced with other neural networks
including but not limited to convolutional neural networks,
restricted Boltzmann machines, long short term memory
AutoEncoders. With such a new module, our method may
give a better performance. In our implementation, however,
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Algorithm 1 Structured AutoEncoders for

Clustering

Subspace

Input: A input data X, and the parameters A1, Ao.
/I Initialization:
Let HY = X and initialize our neural network
{Wim bRl
/I Compute the structure prior:
Obtain the structured prior C of X by solving Eq.(5) or
Eq.(6).
for m=1,2--- , M do
| Get {H™}M_, via Eq.(2).
/I Optimizations:
while not converge do
fori=1,2,--- ,n do
Randomly select a data point x; and let hY = x;,
/I Forward propagation:
for m=1,2---, M do
L Compute hz(-m) via Eq.(2).
// Compute gradients:
form=MM—-1---,1do
| Compute the gradient via Eqns.(8)—(11).
/I Update neural network:
for m=1,2,--- M do
| Update W(™) and b(™) via Eqns.(12)—~(13).

//¥C1ustering:
Obtain the clustering membership by clustering H(Z).
Output: The clustering membership and the parametric

neural Networ ; —1-

we adopt the fully connected layers (i.e., the classic AutoEn-
coder) due to following reasons: 1) we experimentally found
that even with such a simple neural network, our method
could remarkably outperform many popular subspace cluster-
ing methods; 2) it is relatively easy to tune parameters for the
classic AutoEncoder comparing with other neural networks;
3) the classic AutoEncoder is computationally efficient, which

is more friendly to our hardware environment than other
networks.

D. Connection to Previous Works

In this subsection, we discuss the relationship between
our StructAE and previous works from two different angles.
First, we show that StructAE can be treated as a variant
of the classical AutoEncoder (AE). Moreover, with several
simplifications, StructAE can be deemed as a deep extension
of spectral clustering (SC) algorithms.

1) Connection Between StructAE and AE: The well-known
AE utilizes each data point as the supervisor to guide repre-
sentation learning, which ignores the relationship with other
data. Our StructAE will reduce to AE if 41 (Eq. (4)) is
fixed to O, i.e. the structure prior is not incorporated into our
objective function. In this sense, StructAE augments AE with
formulation of the valuable relationships among different data
points (i.e., structure global prior) and such relationships can
give encouraging performance as shown in previous subspace
clustering works [7], [8].
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2) Connection Between StructAE and SC: Most spectral
clustering based methods obtain the segmentation of data by
conducting the k-means algorithm on leading eigenvectors
(w.r.t. largest eigenvalues) of the Laplacian matrix L as afore-
mentioned. StructAE can be regarded as providing a deep
framework to generalize existing SCs.

Theorem 1: Let g(z) = z, 41 — 400, M = 2 in
Eq. (4) and with the following mild constraint for avoiding
trivial solutions, then the compact representation H* learnt
by StructAE will be the solution to

1
min —|H — HC||%E s.t. HHT = 1. (14)
H 2
Interestingly, H* is also optimal to
HLHT 15)
"W HAT

which is exactly the objective of spectral clustering based
methods. The only one difference is the choice of L. To be
exact, L1 = (l: + CT — ccT for our method, whereas
L =D :2AD:2 (D;; = Zj A;;) for the spectral clustering
method [3].

Proof: The optimal solution of Eq. (14) is achieved by
solving the following eigen-decomposition problem:

H(I-C-CT +cchHHT”

H* = i 16
argmin T (16)
which is identical to
H(C +CT —cchHHT
H* = argmax €+ ) ) (17)
HHT
as desired. O

Based on Theorem 1, we can further bridge StructAE and
some existing subspace clustering methods as below:

Remark 1: StructAE is a deep framework of most existing
spectral clustering based subspace clustering methods if the
same structure prior is adopted. With the simplifications shown
in Theorem 1, for example, StructAE will degrade to SSC [7]
with the sparsity prior, to LRR [8] with the low rank prior,
to LSR [6] and L2graph [14] with the L2-norm based prior.

IV. EXPERIMENTS

In this section, we report the performance of the proposed
StructAE comparing with 15 popular subspace clustering
methods regarding to five evaluation metrics.

A. Experimental Settings

1) Baseline Algorithms: We compare the proposed Struc-
tAEs with SSC [7], LRR [8], low rank based subspace
clustering (LRSC) [41], LSR [6], smooth representation clus-
tering (SMR) [42], kernel SSC (KSSC) [24], kernel LRR
(KLRR) [23], latent subspace sparse subspace clustering
(LS3C) [30] and stacked sparse autoencoders (SAE) [43].
Among the compared approaches, KSSC, LS3C, and KLRR
have two variants that are based on the radial basis
function / the polynomial function, denoted by KSSC-
R/ KSSC-P, LS3C-R / LS3C-P and KLRR-R / KLRR-P,
respectively. Moreover, LS3C-L denotes LS3C with the lin-
ear kernel function. LSR has also two variants which are

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

with and without a diagonal constraint. We denote them as
LSR1 and LSR2. Moreover, we examine the performance of
SAEs and SAEg which are SAE with the saturating linear
transfer function and the sigmoid function, respectively. All
evaluated methods are implemented in MATLAB.

In our experiments, SAE and our StructAEs are five-layer
neural networks which consist of 300-200-150-200-300 neu-
rons and use fanh as the activation function. This structure is
introduced in [44], which has shown efficacy in face verifica-
tion. Like [44], we train our network by adopting the standard
SGD with the batch-size of 1 and using different learning
rate for different data sets as elaborated latter. In implemen-
tations, we employ the Homotopy algorithm [45] to solve
{1-minimization problem of SSC, KSSC, and StructAE (in
the case of sparsity). For a fair comparison, we compare the
best performance of all the tested approaches with the tuned
parameters. In other words, we do not split the data into
different subsets for training, validation, and testing as super-
vised works did. Instead, we tune parameters for all tested
methods using the whole data set, as [6], [7] did. Regarding
to the baselines, we seek optimal parameters by referring to the
setting in the corresponding paper. Regarding to our StructAE,
we fix Ao = 1073 in all cases and experimentally determine
the value of A;. In details, we choose an optimal A from
{1074,5 x 1074,1073,5 x 1073, 1072, 5 x 10~2}. Moreover,
SAE and StructAEs are regarded to achieve convergence if
the their loss is less than 10~ or the training epoch reaches

to 100.
2) Data Sets: We perform experiments using five different

data sets, i.e. the COIL20 image data set [46], the Extended
Yale database B (YaleB) [47], the BF0502 data set [48],
the CIFAR10 image database [49], and the mnist handwritten
digits [50]. The COIL20 data set consists of 1,440 object
images distributed over 20 subjects, where the dimension of
each image is 32 x32. The YaleB data set contains 2,414 facial
images captured from 38 persons, where the dimension of
each image is 192 x 168. The used BF0502 data set [23]
includes 1,200 facial images cropped from the TV series
“Buffy the Vampire Slayer”, where each subject contains
200 data points. The CIFAR10 data set includes 60,000
32 x 32 color images of which the first 200 images for each
class are converted into gray images and used in our exper-
iments. The used mnist is a subset by following the setting
of [30].

For comprehensive studies, we conduct experiments not
only using raw data (i.e. gray value), but also using the fol-
lowing four different features, i.e. dense scale-invariant feature
transform (DSIFT) [51], square root of DSIFT (SDSIFT) [52],
the histogram of oriented gradients (HOG) [53], and local
phase quantization (LPQ) [54]. To present more new results
comparing with our conference paper [31], in this paper,
we carry out experiments using YaleB and COIL20 with
SDISFT and LPQ, and CIFAR10 with these four features. The
details for extracting these features are introduced as follows:

o DSIFT and SDISFT: We divide each image into multiple

patches and then densely sample SIFT descriptors from
each patch. The patch size of YaleB is 12 x 12. For
CIFARI10, COIL20, and mnist, the patch size is set as
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TABLE I

RESULTS ON CIFAR10. THE NUMBERS IN BOLDFACE INDICATE THE BEST RESULT ACCORDING TO THE T-TEST, WHERE THE SIGNIFICANCE LEVEL
IS 0.05. STRUCTAE-L1 AND STRUCTAE-L2 DENOTE THE VARIANT WITH (|- AND {2-NORM BASED PRIOR, RESPECTIVELY. STRUCTAE-L*S
AND STRUCTAE-L*L DENOTE ACHIEVING CLUSTERING WITH K-MEANS AND SSC (OR LSR1), RESPECTIVELY. IN OTHER WORDS,
STRUCTAE-L*S PERFORMS CLUSTERING IN SUBSPACE, AND STRUCTAE-L*L PERFORMS CLUSTERING IN THE LATENT SUBSPACE

Features DSIFT HOG
Methods [ Accuracy NMI ARI Precision Fscore [ Accuracy NMI ARI Precision Fscore
StructAE-L1S 18.05+0.07  4.63+0.19  1.89+0.05 11.67+0.04 11.76+0.05 | 25.92+0.95 12.85+0.53  6.62+0.37  15.88+0.35  16.02+0.31
StructAE-LIL | 18.004£0.08  4.1040.07 1.76£0.04  11.55+0.03 11.67+0.03 15.50+0.02 1.69+0.02  0.51£0.01 10.4240.01 10.7510.01
StructAE-L2S 17.53+£0.15  4.31£0.32 1.74+0.11 11.534£0.10  11.63+0.11 | 23.32+1.38 11.334+0.84  5.59+0.58 14.954+0.50 15.1140.55
StructAE-L2L 17.094+0.14  4.17£0.12 1.60£0.03 11.4040.03 11.584+0.02 15.354+0.43 2.4240.33  0.84£0.23 10.724+0.20 10.824+0.24
SAEg 12.754£0.00  0.93+0.00  0.03+£0.00 9.95+0.00 11.0740.01 17.54+0.15 4.58+0.02 1.90+0.01 11.671+0.01 11.76+0.01
SAEs 13.254+0.08 1.13+£0.02  0.10+£0.01 10.0610.01 11.154+0.02 17.8010.00 4.5440.00 1.9440.00 11.7240.00 11.7610.00
SsC 15.924£0.08  3.93£0.04  1.5440.02  11.324£0.02  11.66£0.02 | 18.40+0.07 4.66+0.03  2.0140.02 11.66+0.01 12.451+0.07
KSSC-R 17.00£0.00  4.12£0.01 1.5240.01 11.30+£0.01 11.66£0.00 | 23.60+£0.00  11.2240.01  6.04=£0.01 14.0110.01 14.5740.01
KSSC-P 16.68+0.06  3.90£0.01 1.574£0.00  11.374£0.00  11.554+0.01 | 23.70+£0.00  11.86+£0.00  6.47+0.00 14.26+0.00 15.00+0.00
LS3C-L 14.46+0.02  3.86+0.01 1.3840.01 11.2040.01 11.3440.01 14.8340.15 2.3040.11 0.754+0.06 10.6440.05 10.7240.05
LS3C-P 16.80£0.00  4.05£0.00 1.7440.00 11.5140.00 11.68+0.01 20.5540.00 10.57+£0.00  4.80%0.00 13.2240.00 14.4640.00
LS3C-R 16.73+0.24  3.50+0.05 1.46£0.04  11.28+0.03 11.40+£0.04 | 21.30+£0.00  11.394£0.00  5.59+£0.00 13.9410.00 15.2440.00
LRR 16.35+£0.00  4.25£0.00  1.53£0.00  10.994+0.00  11.4440.00 | 15.2540.11 2.06+£0.03  0.69£0.02 10.58+0.02 10.8610.02
KLRR-R 16.85+£0.00  3.93£0.00  1.374£0.00  11.154+0.00  11.63+0.00 | 23.354+0.00  11.9040.00  0.7040.00 14.0940.00 15.1440.00
KLRR-P 16.84+0.02  4.284+0.02 1.7440.01 11.5340.01 11.5740.01 23.30+£0.00 12.00+0.00  6.66+0.00 14.2440.00 14.3240.00
LRSC 16.444+0.13  3.2440.01 1.2140.03 11.03+£0.02  11.43+0.03 15.51£0.40 2.45+£0.26  0.86£0.20 10.7440.18 10.8340.21
LSR1 16.21£0.05  3.97£0.02 1.49+0.01 11.2940.01 11.53+0.01 15.61+£0.33 2.50+£0.12  0.89+£0.06 10.7710.06 10.8410.05
LSR2 16.16£0.15  3.66+0.04 1.3240.02  11.14£0.02  11.10£0.02 | 15.52+0.49 2.43+0.14  0.85£0.10 10.7410.09 10.81+0.09
SMR 15.154£0.00  2.16£0.00  0.5740.00  10.48+0.00  10.63+0.00 | 20.9240.04 6.18+£0.02  3.02+£0.02 12.5440.02 13.234+0.01

4 x 4. By concatenating these SIFT descriptors of all
patches of each image, we obtain a feature vector with
the dimension of 32,256 for YaleB, 2,048 for CIFARI10,
and 2,048 for COIL20, respectively.

« HOG: We first divide each image into multiple blocks
with two scales, i.e. 4 x 4 and 2 x 2 for CIFAR10. Then,
we extract a 9-dimensional HOG feature vector from each
block. After concatenating the features of all patches of
each image, the feature dimension is 2,880 for CIFAR10.

o LPQ: We first divide each image into multiple non-
overlapping blocks and then extract the LPQ feature
from each patch. The patch size is set as 8 x 8 for
CIFARI10 and COIL20 and 15 x 15 for YaleB. For all
the tested data sets, we set the size of LPQ window as 3,
5, and 7. By concatenating the features of all patches of
each image, the dimension of each feature is 12,288 for
CIFAR10 and COIL20 and 101,376 for YaleB.

Like [44], we perform dimension reduction using PCA on
all the tested data sets and the reduced dimension is fixed
to 300 for computational efficiency.

3) Evaluation Criteria: To evaluate the clustering quality
of our method, five measurements are adopted, including
Accuracy (or called Purity), normalized mutual information
(denoted by NMI), the adjusted rand index (denoted by ARI),
Precision, and Fscore. Moreover, we repeat all evaluated
methods five times and report their mean and the standard
deviation regarding to these metrics.

B. Investigation on Different Variants of StructAE

StructAE can incorporate various structured priors as
discussed above. In this subsection, we compare the
clustering results of StructAE with sparse (denoted by
StructAE-L1) and non-sparse prior (denoted by StructAE-L2)
on the CIFARI10 data set. Specifically, StructAE-L1 adopts
the sparsity by solving Eq. (5), and StructAE-L2 utilizes the

prior derived from Eq. (6). In our experiments, we directly
use the tuned parameters from SSC for StructAE-L1 and from
LSR2 for StructAE-L2. This implies that the performance of
StructAEs might be further improved if the parameters for the
structure prior are specifically tuned.

Furthermore, we also examine the performance of StructAE
with subspace clustering and latent subspace clustering. To this
end, four variants of StructAE are proposed and investi-
gated, i.e. StructAE-L1S, StructAE-L2S, StructAE-L1L, and
StructAE-L2L. The first two methods correspond to StructAE-
L1 and StructAE-L2 with k-means (clustering in subspace).
The latest two approaches correspond to StructAE-L1 and
StructAE-L2 with SSC and LSR (clustering in the latent
subspace), respectively. In experiments, the learning rate u
of StructAE-L1S is set as 27! for DSIFT, SDSIFT, and LPQ,
and 2710 for HOG. Regarding to StructAE-LIL, y is set as
2~ for DSIFT and LPQ, and 2~'° for SDSIFT and HOG.
Regarding to StructAE-L2S, x is 27!! for DSIFT and LPQ,
and 2712 for SDSIFT and HOG. Regarding to StructAE-L2L,
we set 1 = 2712 in these four tests.

From Table I and II, the following observations can be
obtained. 1) StructAE-L1 generally outperforms StructAE-L2,
i.e. L1-norm based sparsity prior gives a better performance
to StructAE comparing with L2-norm based non-sparsity
prior. 2) In most cases, StructAE-L1L and StructAE-L2L
perform better than StructAE-L1S and StructAE-L2S, respec-
tively. This verifies the conclusion in [30], i.e. latent sub-
space clustering could be more competitive than subspace
clustering. 3) StructAE-L1/StructAE-L2 significantly outper-
forms SSC/LSR, where the former could be regarded as
the deep extension of the latter. Such a result supports our
motivation that subspace clustering could benefit from deep
representation learning. As StructAE-L1L remarkably outper-
forms other variants of StructAE, we will only report its
performance in the following experiments and denote it as
StructAE for simplicity.
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TABLE II
RESULTS ON CIFAR10

Features | SDSIFT LPQ
Methods [ Accuracy NMI ARI Precision Fscore [ Accuracy NMI ARI Precision Fscore
StructAE-L1S 16.55+0.08  2.93+0.08 1.05£0.04 10.91+0.04 11.05+0.03 | 21.05+0.56  7.54+0.78  3.57£0.71 12.23+0.46  16.721+0.57
StructAE-LIL | 18.00£0.00 3.86+0.00 1.56+0.00  11.354+0.00  11.574+0.00 | 17.654+0.09  4.23+0.04  1.90+0.02 11.651+0.02 11.861+0.02
StructAE-L2S 16.10+0.11  3.00+£0.04  1.07£0.02 10.93+0.02 11.054+0.01 18.58+0.79  6.17+£0.64  2.60+0.40 11.61+0.27 15.95+0.37
StructAE-L2L 17.184£0.34  3.99+0.22 1.484+0.10  11.27£0.09 11.56+0.09 16.85+£0.00  4.374£0.00 1.914+0.00 11.671+0.00 11.7940.00
SAEg 15.50+£0.00  3.284+0.00 1.02+0.00  10.85+0.00  11.37+0.00 | 12.69+0.11 0.91+0.04  0.0140.00 9.974+0.01 11.2040.04
SAEs 15.344£0.05  3.611+0.01 1.1440.00 10.9540.00 11.4440.01 13.134£0.07 1.08+0.02  0.09+0.01 10.05+0.01 10.80+0.03
SsC 15.92+0.12  2.96+£0.04  1.01£0.02 10.86+0.01 11.1940.01 16.02+0.03  3.44+0.03 1.47+£0.02 11.2740.01 11.5410.01
KSSC-R 16.64+0.05  3.38+0.02  1.27£0.02 11.10+0.01 11.30+0.01 | 20.47+0.04  6.78£0.00  4.48+0.00 11.8540.00 14.361+0.00
KSSC-P 6.65+0.00  2.87+0.01 1.11£0.00  10.96£0.00  11.09£0.00 | 18.92+0.11  5.7240.09  2.6440.05 11.3440.04 12.4240.05
LS3C-L 16.69+0.14  3.84+0.04 1.514+0.02 11.2940.02 11.2840.02 17.204+0.06  3.7640.03 1.5740.01 11.3840.01 11.4540.01
LS3C-P 16.85+0.02  2.831+0.01 1.10+0.01 10.9440.01 11.2240.01 17.65£0.00  6.03+£0.00  2.90£0.00 11.4440.00 13.1040.00
LS3C-R 15.30+£0.00  2.52+0.00  0.98£0.00  10.82£0.00  11.28£0.00 | 19.10£0.05  5.65+0.02  2.7440.02 11.3910.01 12.661+0.01
LRR 15.05+£0.09  3.64+0.03  0.89£0.01 10.55+0.01 11.16+0.04 15.06+0.09  2.53+0.02  0.73£0.01 10.5410.01 12.0940.02
KLRR-R 16.47+£0.03  3.59+0.01 1.37£0.00  11.19£0.00  11.31£0.00 | 20.35£0.00  6.794£0.00  4.5240.00 12.024+0.00 14.1140.00
KLRR-P 17.13+0.03  3.4440.01 1.3940.01 11.1840.01 11.48+0.00 | 19.81+0.19  6.73£0.04  3.15+0.03 11.76+0.03 13.011+0.03
LRSC 17.094£0.07  3.4240.10  1.50+0.04 11.2840.04 11.4940.03 18.63+0.04  4.0940.01 1.80+0.00 11.5740.00 11.7540.00
LSR1 15.88+0.10  3.28+0.07 1.41£0.03 11.2240.02 11.48+0.03 16.67+£0.03  3.88+£0.00  1.75+£0.00 11.5240.00  11.76%0.00
LSR2 16.47+£0.23  3.68+£0.04  1.23£0.03 11.05+0.03 11.36+0.03 16.65+0.00  3.79+0.00  1.69+£0.00 11.4740.00 11.7040.00
SMR 16.15+£0.00  2.30+£0.00  1.11£0.00  10.96£0.00  11.12£0.00 | 17.30£0.00  3.98+0.00  1.7140.00 11.284+0.00 13.0940.00
TABLE III
REsuLTS oN COIL20

Features | SDSIFT LPQ

Methods { Accuracy NMI ARI Precision Fscore { Accuracy NMI ARI Precision Fscore
StructAE | 91.04+2.23  94.67+0.99  88.61+1.95  85.90+2.36 89.19+1.83 | 84.38+1.67 89.72+0.57 81.51+2.02  81.65+2.83  82.43+1.90
SAEg 79.714£2.86  91.90+£1.05  78.09+2.10  70.36+2.84  79.31+£1.97 | 60.42+1.14  70.71+£0.86  50.64+1.39  49.74+1.51 53.26+1.33
SAEs 78.94+£1.15  91.85+£0.04  78.43+£1.19  70.77£3.27  79.63£1.09 | 54.35£1.63  65.63£1.05 4299+1.79 41.77£1.64  46.09+1.68
SSC 82.17+1.59  91.13+0.69  78.86+1.52  70.184+3.32  80.05+1.40 | 75.53+1.82  88.01+0.85  74.53+191  70.86+1.63  75.884+1.82
KSSC-R 80.58+3.14  92.33+1.05  79.70+2.21  71.67+3.30  80.83+2.07 | 71.89+1.54  84.23+1.19  66.844+2.51  63.64+3.55  68.601+2.34
KSSC-P 85.56+1.00  94.274+0.13  83.36+0.62  75.584+0.31 84.2740.59 | 71.394+0.51 84.08+0.36  67.85+0.72  63.76+1.80  69.5940.66
LS3C-L 34.04+1.78  52.24+1.75 19.0942.61 16.85+2.03  25.05+2.22 | 50.33+0.79  62.67+0.38  39.67+0.47  36.20+1.01 43.2240.43
LS3C-P 67.284£2.95  80.97+£1.23  60.30+£3.34  55.05+4.23  62.53+3.09 | 57.74+£2.11 75.14£0.74  53.52+£1.40  49.04+£1.67  56.14+£1.30
LS3C-R 21.92+048  31.76+£0.66  14.75+0.45 15.394£0.28  20.30+£0.55 | 55.97+£3.27 71.63+1.62  47.36+£3.51 43424435  50.39+£3.19
LRR 87.51+1.76  94.284+0.61 84.34+1.88  77.404+3.17  85.194+1.77 | 75.994+4.01 88.64+1.37  76.124+3.03  69.67+3.92  74.584+2.83
KLRR-R | 79.944+0.88  89.02+0.74  77.75£1.32 75954233  78.89+1.24 | 68.58+0.91  79.64+0.60 61.44+1.21  5833+1.12 63.51%1.14
KLRR-P 7721+£195  87.431+0.88  74.324+1.72  71.09£2.05  75.67£1.62 | 64.28+1.18  76.55+0.63  56.3711.61 54.36+£2.40  58.69+1.48
LRSC 55.08+0.12  71.26£0.19  47.95+£0.40  45.55+042  50.81+0.38 | 61.85+£1.44  72.85+£0.96  53.15£1.86 52.04£195 55.63+1.75
LSR1 64.86+0.83  74.10+£0.55  53.78+2.03  50.98+2.72  56.30+1.88 | 69.57+1.54  77.81+£0.88  61.53+1.38  60.66+£1.22  63.51+£1.31
LSR2 65.00+£1.67  74.34+0.73  5431£191 5091+2.80 56.83+1.75 | 69.82+2.66  77.10£1.24  61.20+£2.33  60.72+£2.94  63.20+2.19
SMR 80.224+1.07  89.97+0.19  78.27+0.26  75.30+1.70  79.40+0.22 | 77.88+1.17  86.80+0.12  73.63+1.38  71.99+2.30  74.984+1.29

C. Comparison With State-of-the-Art

In this subsection, we compare StructAE with some
state-of-the-art approaches using COIL20, YaleB, and mnist.
Moreover, we have also illustrated the 2D-visualization of
COIL20 and YaleB by conducting t-sne [55] on the input data
and features learned by our StructAE.

1) Results on COIL20: The results of StructAE on
COIL20 are reported in Table III. In experiments, we set
21 = 10"* and u = 2710 of StructAE for the SDSIFT feature,
and 1{ =5 x 1073 and nw= 21 for the LPQ feature.

From the results, we can observe that:

o StructAE outperforms the other methods by a consider-
able margin in terms of the five evaluation metrics. When
using the LPQ feature, for example, its performance is
at least 6.50%, 1.08%, 5.39%, 9.66%, and 6.55% higher
than the second best result regarding to these five metrics.

o Considering different features, the best performance is
achieved by our StructAE on SDSIFT. The Accuracy of
StructAE increases from 84.38% (using the LPQ features)
to 91.04%.

« Among the tested approaches, StructAE and LS3C are
only two methods to perform subspace clustering in

the learned latent space. The results show that LS3C is
inferior to our StructAE. This may be because LS3C is
a shallow model while ours are deep models.

o StructAE also remarkably outperforms SAE. This result
is not surprising because our model incorporates locality
and globality together, while SAE only considers the
locality and ignores the relations among data points.

o Fig. 2 shows that our method could learn a compact and
distinctive representation which makes it superior to the
tested methods.

2) Results on YaleB: We set A1 = 107* and u = 2710 for
StructAE in this experiment. Table IV reports results of the
tested methods on the YaleB data set, which shows that: 1) In
all tests, StructAE achieves the best performance. When using
the SDISFT feature, for example, it outperforms the second
best method with a performance gain of 6.38% in Accuracy,
3.43% in NMI, 7.61% in ARI, 9.50% in Precision, and 7.40%
in Fscore; 2) All the investigated methods achieve the worst
results on the LPQ features. Especially, the performance of
SAEg and SAEs decreases more than a half. 3) Fig. 3 provides
a visualized evidence for the superior performance of our
method.
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TABLE IV

RESULTS ON YALEB
Features | SDSIFT LPQ
Methods { Accuracy NMI ARI Precision Fscore { Accuracy NMI ARI Precision Fscore
StructAE | 94.70+£2.50  96.58+0.76  92.29+2.44  89.72+3.90  92.50+2.37 | 45.65+1.06 50.24+1.45  20.84+0.28  22.25+0.28  26.61+0.23
SAEg 88.324+2.60  93.15+0.86  84.68+2.30  79.73+3.74  85.10+2.22 | 27.7740.58  32.884+0.45 7.40+0.51 7.88+0.47 10.68+0.43
SAEs 85.95+0.77  92.77+0.52  83.00+£1.90  77.284+2.76  83.48+1.84 | 24954037  32.2140.33 8.5240.20 9.6040.29 11.3240.16
SsC 86.35+1.13  92.824+0.48  84.04+1.06  80.224+1.58  84.474+1.03 | 37.7110.61 32.4610.81 9.90+0.35 8.89+0.27 13.45+£0.32
KSSC-R 85.31+1.68  91.02+0.37 78474082  74.00+1.19  79.07+0.80 | 41.93%+1.11 37.50+0.42  13.0940.69 11.16£0.64  16.45+0.60
KSSC-P 62.39+1.19  68.07+£0.56  38.25+3.10  33.27+3.79  40.19+£2.91 | 42.39+1.17 38.08+1.10  13.85+0.85 11.7240.71 15.23+0.77
LS3C-L 51.2841.02  61.60+£0.46  29.66+0.65  26.08+0.83  31.89+0.60 | 44.06+0.79  46.05+0.37 9.85+0.23 8.66+0.18 13.4940.20
LS3C-P 48.82+1.39  54.7640.39 17.08+1.42 13914£1.29  20.2241.26 14.65+0.39  21.11£0.40 0.98+0.03 3.1440.02 5.4240.04
LS3C-R 10.56£0.29 13.15+£0.19 1.10£0.07 3.50+£0.05 4.11£0.10 6.72+0.10 6.90£0.20 0.05£0.03 2.63+0.02 3.49+0.05
LRR 85.62+0.55 92994043  83.254+2.13  77.2743.08  83.73+2.07 | 38.69+1.31  49.931+0.51 14.38+3.24  17.73£3.50  21.84+3.03
KLRR-R | 7027£1.10  75.84£0.17  49.12+1.15  432441.60 50.67£1.10 | 36.30£0.58  46.49+0.53 13.70+£0.90  10.97+1.12  15.93+0.81
KLRR-P 69.76+1.36  75.814+0.52  52.184+1.06  47.70+1.91 53.5740.99 19.874+0.52  35.73£0.54 9.9940.28 12.0640.27 12.3940.27
LRSC 74.74£0.62  79.63+0.73  58.06£1.67  53.04+£2.19  59.28+1.60 | 45.65+0.97  49.64+0.62 17.4440.89 15.74+0.83  20.98+0.86
LSR1 76.02+1.21 80.14+0.47  58.274+1.60  53.00+2.42  59.48+1.53 | 41.50+1.22  47.00+0.54  11.00+1.30  17.394+1.31 17.65+£1.18
LSR2 7470£1.32  79.39+0.80  56.14+0.34  50.41+£0.64  57.43+0.33 | 41.40+0.89  47.76+0.78 11.93+1.67 18.32+1.76  18.10£1.53
SMR 77.776+£0.44  83.4440.39  64.71+£1.03  59.51+£1.72  65.72+0.99 | 44.77+0.46  48.12+1.00  18.55+2.62  14.04+342  19.11+2.46

TABLE V

RESULTS ON MNIST
Features | SDSIFT LPQ
Methods { Accuracy NMI ARI Precision Fscore { Accuracy NMI ARI Precision Fscore
StructAE | 65.70+0.00  68.98+0.00  57.99+0.00 57.31+0.00  62.60+0.00 | 61.10+0.02 55.95+0.06 45.40+0.04 49.12+0.04 51.10+0.04
SAEg 52.03+£0.47  5593+0.07 38.71£0.09  36.83+0.05  46.47+0.09 | 31.65+£0.00  25.10+£0.00  13.96+0.00 21.41+0.00  23.3940.00
SAEs 48.63+1.05  53.7310.31 37.04+1.18  37.21£2.32  44.64+0.69 | 31.65+0.00  25.1040.00 13.96+0.00  21.414+0.00  23.3940.00
SSC 63.85+£0.00  65.33+0.00 53.36:£0.00 54.81+£0.00  60.48+0.00 | 58.17+£0.00  53.98+0.00  42.03+£0.00  46.78+0.00  49.90+0.00
KSSC-R 60.90+£0.00  64.60+£0.00  51.65+£0.00 51.70£0.00  57.00£0.00 | 55.10£0.00  50.23+0.00  37.66+£0.00  42.59+0.00  44.15+0.00
KSSC-P 61.20+£0.00  65.06+£0.00  52.06+£0.00  52.08+£0.00  57.36+£0.00 | 54.93+0.00 49.81+£0.00  37.35+£0.00  42.35+0.00  43.86+0.00
LS3C-L 35.174+0.22  40.4740.11 25.73+0.12  28.1240.10  35.01+0.10 | 42.1540.01 42.2940.03  27.314£0.02  32.46+0.01 35.234+0.02
LS3C-P 47.01£0.50  48.28+0.09  33.46+£0.07  37.22+0.04  40.78+0.08 | 41.73+£0.01 39.0940.01 25.254£0.00  30.77+£0.00  33.39+£0.00
LS3C-R 64.05£0.00  66.71£0.00  54.94+0.00 5591+£0.00  61.09+0.00 | 58.98+0.00  53.79+0.00  43.14+0.00 47.37+£0.00  49.47+£0.00
LRR 63.69+0.02  66.37+£0.04  53.88+£0.03  53.59+0.03  58.97+£0.02 | 60.20+£0.00  55.26+0.00  44.52+0.00 48.98+0.00  50.24+0.00
KLRR-R | 58.67£0.00 57.164£0.00  45.06£0.00  49.574£0.00  50.70£0.00 | 54.93£0.00  50.31£0.00  38.4240.00  43.49£0.00  44.79£0.00
KLRR-P 58.67+0.00  58.904+0.00  46.224+0.00  50.36£0.00  51.77£0.00 | 53.27+0.00  46.59+0.00  35.344+0.00  41.054+0.00  41.9840.00
LRSC 56.96+£0.02  56.72+0.03  44.58+0.04  46.82+0.04  50.60+0.04 | 50.71£0.05  46.42+0.06  34.69+0.05  39.49+0.04  41.59+0.05
LSR1 62.48+£0.00  60.05£0.00  48.38+0.00 52.17£0.00  53.71£0.00 | 50.92+0.00  46.53+0.00 34.93+0.00 39.94+0.00 41.76:£0.00
LSR2 62.50+£0.00  59.95+0.00  48.32+0.00 52.13£0.00  53.66+0.00 | 50.88+0.00  46.60+£0.00  34.96+0.00 39.91+£0.00  41.80+0.00
SMR 62.774£0.00  67.22+0.83  56.19+0.00  56.83+0.00  61.62+0.00 | 51.20+£0.00  49.01+£0.00  36.21+0.00  40.65+0.00  42.98+0.00
3) Results on mnist: In the experiments, 4; and u of TABLE VI

StructAE are fixed to 0.05 and 2710, respectively. Table V
reports the results which show that the proposed StructAE
consistently outperforms the evaluated methods on the mnist
and LS3C-R achieves the second best result in most cases.
Noted that, [30] has experimentally shown that the highest
Accuracy of SSC, LRR, LS3C, and nonlinear LS3C is about
41.41%, 24.52%, 41.32%, and 45.37% on the mnist. Clearly,
these four methods remarkably improve their performance in
our experimental setting.

D. Comparison With Deep Features

In this section, we show that our method with handcrafted
features could significantly outperform state-of-the-art sub-
space clustering approaches with deep features. Specifically,
we first resize each image to 224 x 224 so that the images
could be passed through the pretrained VGG16 [56] and
ResNetS0 [57]. After obtaining deep features, we conduct
SSC and LRR to achieve data clustering. For simplicity, here,
we report the best result achieved by our method in the
above setting and use the Accuracy as the evaluation metric.
Table VI demonstrates that the proposed StructAE is superior
to the baselines by a considerable performance margin. To be
exact, it is 4.36%, 14.96%, 39.56%, and 1.35% higher than
the best baseline on these four data sets. Furthermore, one
could observe that LRR+VGG16 does not give an acceptable

COMPARISON WITH DEEP FEATURES. THE NUMBERS IN BOLDFACE
INDICATE THE BEST RESULT ACCORDING TO THE T-TEST,
WHERE THE SIGNIFICANCE LEVEL 1S 0.05

Methods \ CIFAR10 COIL20 YaleB mnist
StructAE 25.92+0.95  91.044+2.23  94.70+2.50  65.70+0.00
SSC+VGG16 20.404+0.10  28.4940.53  35.854+2.64  56.55+0.00
SSC+ResNet50 21.56+0.10  41.014+0.57  40.47+1.49  62.87£0.01
LRR+VGGI16 11.68+0.16  76.08£1.87  55.14£1.99 11.81£0.09
LRR+ResNet50 12.754+0.15  64.4242.65 6.5540.11 64.351+0.03

result on CIFAR10 and mnist. The possible reason is that
VGG16 features do not show low rank property.

E. Influence of Depths, Widths, and Parameter

In this subsection, we examine the clustering results of
our StructAE with different depths, widths, and A; using
the BF0502 raw data set in terms of clustering Accuracy.
Regarding the evaluation on depths and widths, two variants
of StructAE (A1 = 1073 and x = 27'0) are investigated,
i.e. StructAE4 and StructAE2, which correspond to five-layer
case (M = 4) and three-layer case (M = 2). For M =2,
the used neural network is with 300-150-300 neurons. More-
over, StructAE100 and StructAE50 have similar structure with
StructAE4. The only one difference is that the middle layer of
StructAE100 and StructAES50 consists of 100 and 50 neurons,
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Fig. 2. Visualization on the COIL20 data set. See the electronic version for a better look. (a) SDSIFT. (b) StructAE + SDSIFT. (c¢) LPQ. (d) StructAE +
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Fig. 3. Visualization on the YaleB data set. See the electronic version for a better look. (a) SDSIFT. (b) StructAE + SDSIFT. (c) LPQ. (d) StructAE + LPQ.
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Fig. 4. The performance of StructAE with different depths and widths on
the BF0502 raw data set, where StructAE2 denotes the network with 2 hidden
layers, and StructAE4 denotes the 4-hidden-layer network. StructAE100 and
StructAES0 denote the networks with 100 and 50 neurons at the middle layer,
respectively.

respectively. In experiments, A; is set as 1072 for Struc-
tAE2 and 103 for StructAE4, StructAE100 and StructAE50.
Regarding the evaluation on parameters, StructAE-S and
StructAE-L are investigated, which correspond to StructAE-
L1S and StructAE-L1L, respectively.

From Fig. 4-5, some observations are summarized as

follows:

o Deeper network leads to better clustering results for our
method. For example, StructAE4 is 3.75% higher than
StructAE2 in Accuracy.

o The best performance is achieved by our Struc-
tAE4 which outperforms the best baseline method by

100
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3
s
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& 50
1]
3
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<9
<

25
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1E-04 SE-04 1E-03 5SE-03 1E-02 5SE-02 1E-01 5SE-01

Fig. 5. Influence of the parameter 11 on the BFO502 raw data set.

5.50%. Moreover, when the size of encoding layer
reduces from 150 to 100, the clustering performance
of StructAE remains unchanged. If this number further
reduces to 50, i.e., StructAES0 performs slightly worse,
but it still outperforms the baselines.

o With increasing Aj, the Accuracy of StructAE-S
and StructAE-L varies in [68.67%,73.08%] and
[84.83%, 97.25%], respectively. Clearly, a specifically
tuned A; will remarkably improve the performance of
our method.

FE. Performance With Different Activation Functions

We examine the clustering performance of StructAE with
four nonlinear functions by conducting experiments on the
YaleB database with DSIFT and HOG. The investigated acti-
vation functions include tanh, sigmoid, non-saturating sigmoid
(nssigmoid), and softplus (i.e. ReLU). For extensive investiga-
tions, we again investigate the performance of StructAE in
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Fig. 6. The clustering results of StructAE with four nonlinear activation functions on the YaleB database, where StructAE-S denotes clustering in subspace
and StructAE-L denotes clustering in the latent subspace. (a) StructAE-S on DSIFT. (b) StructAE-L on DSIFT. (c) StructAE-S on HOG. (d) StructAE-L

on HOG.

TABLE VII
TIME COST ON THE CIFAR10 DATA SET WITH THE DSIFT FEATURE

Methods \ Training Time (s) Inference Time (s)
StructAE-L1S 16434.841+61.89 258.30419.31
StructAE-L1L 31468.28+72.26 295.07454.49
StructAE-L2S 13542.07+82.62 185.414+10.61
StructAE-L2L 21503.82469.96 129.20+13.91
SAEg 11311.434+67.13 311.43434.40
SAEs 11313.164+59.26 313.16427.13
Ssc 106.26+6.93 -
KSSC-R 5613.104-29.94 -
KSSC-P 7393.17475.11 -
LS3C-L 1166.004+12.43 -

LS3C-P 406.62+0.55 -
LS3C-G 652.72+1.01 -
LRR 168.071+4.64 -
KLRR-R 4139.38+98.83 -
KLRR-P 25.4440.49 -
LRSC 35.344+2.37 -
LSR1 48.11+2.23 -
LSR2 50.9641.95 -
SMR 197.88+4.63 -

the case of clustering in subspace (denoted by StructAE-S)
and latent subspace (denoted by StructAE-L).

From Fig. 6, ones could observe that:

o By comparing StructAE-S and StructAE-L, the sigmoid
function gives a remarkable performance change, i.e.,
the second best result with StructAE-S versus the worst
result with StructAE-L. The possible reason is that
clustering in latent space makes the sigmoid function
saturated, and lead to barely learning of StructAE-L.
In contrast, with the non-saturating version of sigmoid
(i.e. nssigmoid), StructAE-L performs stable in different
settings.

o Discarding the sigmoid function, the activation with
stronger nonlinearity gives better performance. From
Fig. 6, ones could see that the ranh function is with the
strongest nonlinearity which may result in its superior
performance.

G. Time Cost Analysis

In this subsection, we investigate the computational effi-
ciency of our method using the CIFAR10 data set with the
DSIFT feature. The inference time denotes the cost taken by
StructAEs and SAEs to perform representation learning and
clustering after the networks converging. Table VII shows that
the proposed StructAEs are less efficient than the baselines.

The training time of StructAEs consists of three parts, i.e.,
for training AutoEncoder, for computing the structure prior,
and for training StructAEs by solving Eq.(4). In fact, the first
part is the most time-consuming, which takes about 60% of
the entire cost. Noticed that, once StructAE converges, it will
achieve clustering result quickly.

V. CONCLUSION

This paper proposed a novel neural network for sub-
space clustering by simultaneously preserving the locality and
globality of data sets. Extensive experimental results have
demonstrated that our method is remarkably superior to
15 recently-proposed approaches in terms of five clustering
evaluation metrics.
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