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Sparse Subspace Clustering (SSC) has achieved state-of-the-art clustering
quality by performing spectral clustering over a ℓ1-norm based similarity
graph. However, SSC is a transductive method which does not handle
with the data not used to construct the graph (out-of-sample data). For
each new datum, SSC requires solving n optimization problems in O(n)

variables, where n is the number of data points. Therefore, it is inefficient
to apply SSC in fast online clustering and scalable grouping. In this letter,
we propose an inductive spectral clustering algorithm, called inductive
Sparse Subspace Clustering (iSSC), which makes SSC feasible to cluster
out-of-sample data. iSSC adopts the assumption that high-dimensional
data actually lie on the low-dimensional manifold such that out-of-sample
data could be grouped in the embedding space learned from in-sample
data. Experimental results show that iSSC is promising in clustering out-
of-sample data.

Introduction: Spectral clustering is one of the most popular subspace
clustering algorithms, which aims to find a cluster membership of data
points and the corresponding low-dimensional representation by utilizing
the spectrum of a Laplacian matrix. The entries in the Laplacian matrix
depict the similarity among data points. Thus, the construction of similarity
graph lies on the heart of spectral clustering. In a similarity graph, the
vertex denotes a data point and the connection weight between two points
represents their similarity.

Recently, Elhamifar and Vidal [1] constructed a similarity graph by
using ℓ1-minimization based coefficient and performed spectral clustering
over the graph, named Sparse Subspace Clustering (SSC). It automatically
selects the nearby points for each datum by utilizing the principle of
sparsity without pre-determination of the size of neighborhood. SSC
has achieved impressive performance in images clustering and motion
segmentation. However, it requires solving n optimization problems over
n data points and calculating the eigenvectors of a n× n matrix, resulting
in a very high computational complexity. In general, the time complexity
of SSC is proportion to the cubic of data size. Thus, any medium-sized
data set will bring up the scalability issues with SSC. In addition, SSC
is a transductive algorithm which does not handle with the data not used
to construct the graph (out-of-sample data). For each new datum, SSC
needs performing the algorithm over the whole data set, which makes SSC
inefficient to fast online clustering and scalable grouping.

To address the scalability issue and the out-of-sample problem in SSC,
we propose an inductive clustering algorithm which is called inductive
Sparse Subspace Clustering algorithm (iSSC). Out motivation derives
from a widely-accepted assumption in manifold learning that the high-
dimensional data actually lie on the low-dimensional manifold. Therefore,
we could obtain the cluster membership of out-of-sample data by assigning
them to the nearest cluster in the embedding space learned from well-
sampled in-sample data. In other words, we resolve the out-of-sample
problem in SSC by using subspace learning method. On the other hand,
for large scale data set, we randomly split it into two parts, in-sample data
and out-of-sample data, such that scalability issue could be addressed as
an out-of-sample problem.

Inductive Sparse Subspace Clustering Algorithm: The basic idea of our
approach is that: Suppose two data sets Y ∈Rm×p (in-sample data)
and X∈Rm×n (out-of-sample data) are drawn from multiple underlying
manifolds of which each corresponds to a subspace. Provided Y is
sufficient such that the manifolds are well-sampled, we expect to learn an
embedding space with Y and group X in the embedding space since it is
more compact and discriminative than the original space (See Fig. 1).

We make SSC feasible to cluster out-of-sample data in "subspace
clustering, subspace learning and extension" manner. The first two steps
are offline processes which only involve in-sample data, and the last one
groups the out-of-sample data in online way.

To obtain the membership of in-sample data Y, iSSC constructs a
similarity graph by minimizing the following objective function,

min ∥ci∥1 s.t. ∥yi −Yici∥2 < δ, (1)

where ci ∈Rp is the sparse representation of the data point yi ∈Rm over
the dictionary Yi , [y1 . . .yi−1 0 yi+1 . . .yp], and δ≥ 0 is the error
tolerance.
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Fig. 1 A key observation. (a) some data points sampled from two 2-dimensional
manifolds (trefoil-knots) which are embedded into a 3-dimensional space; (b) a
plan view of the sampled data; (c) the embedding of the sampled data. It is easy
to find that out-of-sample data points could be easily grouped into the correct
cluster after they were projected into the embedding space.

After getting the coefficients of Y, we aim to group out-of-sample data
X in the embedding space. In this letter, following the embedding program
of Neighborhood Preserving Embedding algorithm (NPE) [3], we perform
subspace learning to compute the projection matrix W via

min
W

∥∥WTY −WTYC
∥∥2

2
, s.t. WTYYTW= I, (2)

where C∈Rp×p is the collection of the sparse representation of Y
produced by (1), and the constraint term aims at the scale-invariance.

The solution of (2) is given by solving the following generalized
eigenvector problem:

(I+CTC−C−CT )YTW= λYTW (3)

Once the optimal W is achieved, iSSC transforms out-of-sample data
X in the embedding space via WTX, and then assigns X to the nearest
cluster in the space.

The steps of iSSC can be summarized as follows:

1 For in-sample data Y, calculate the sparse representation coefficients
C via solving

min ∥ci∥1 s.t. ∥yi −Yici∥2 < δ.

2 Construct a Laplacian matrix L= S− 1
2 AS− 1

2 by using the affinity
matrix A, where S=diag{si} with si =

∑p
j=1 aij , aij is an entry of

A and A= |C|+ |C|T .
3 Obtain the matrix V ∈Rp×k which consists of the first k normalized

eigenvectors of L corresponding to its k smallest eigenvalues.
4 Get the segmentations of Y by performing k-means clustering

algorithm on the rows of V.
5 Suppose the desired dimensionality of embedding space is d,

the projection matrix W ∈Rm×d is given by the eigenvectors
corresponding to d smallest nonzero eigenvalues of the following
eigenvector problem:

MZT = λZT ,

where M= I+CTC−C−CT and Z=WTY.
6 Project out-of-sample data X into the d-dimensional space via WTX.
7 Search the nearest neighbor of X from Y in the embedding space, and

assign X to the cluster that the neighbor belongs to.

Computational Complexity Analysis: Suppose in-sample data Y ∈Rm×p

drawn from k subspaces, we need O(t1mp3 + t2pk2) to perform SSC over
Y, where t1 and t2 are the numbers of iteration of Homotopy optimizer [2]
and k-means clustering algorithm, respectively. Moreover, we need O(p3)
to compute the projection matrix WT . To group out-of-sample datum X∈
Rm×n, we need O(dmn) to obtain its d-dimensional representation and
O(dpn) to search the nearest neighbor of X from Y in the embedding
space. Note that, p≪ n− p < n.

Putting everything together, the computational complexity of iSSC
is O(t1mp3 + t2pk2 + dpn) owing to d <m and m<p, where m<p
derives from the conditions of compressive sensing theory. Clearly, iSSC
is more efficient than SSC whose time complexity is about O(t1mn3 +
t2nk2) .

Baselines and Evaluation Metrics: We presented the experimental results
of our approach over two real-world data sets, i.e., Extended Yale Database
B (ExYaleB) and USPS. ExYaleB contains 2414 facial images of 38
subjects. We cropped the images from 192× 168 to 48× 42 and extracted
114 features by using PCA to retain 98% energy of the cropped data. USPS
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consists of 11000 handwritten digital images with 256 dimensionality over
10 classes.

We compared iSSC with three state-of-the-art inductive clustering
algorithms, i.e., Nyström based spectral clustering [4], Spectral
Embedding Clustering (SEC) [5] and Approximate Kernel K-means
(AKK) [6]. Note that, Nyström based method and SEC have two
variants, which are denoted as Nyström, Nyström_Orth, SEC_K and
SEC_R, respectively. The approximate affinity matrix of Nyström is non-
orthogonal, while that of Nyström-Orth is column-orthogonal. SEC_K
performs k-means to get the clustering results and SEC_R adopts spectral
rotation method to do it. Moreover, we reported the results of k-means
clustering and SSC [1] over the whole database. The MATLAB code of
iSSC can be downloaded at http://www.machineilab.org/users/pengxi/.

Accuracy and Normalized Mutual Information (NMI) are used to
measure the clustering quality of the tested methods. The value of
Accuracy or NMI is higher, the performance of the algorithm is better.

In all experiments, the tuned parameters for the algorithms were applied
to achieve their best Accuracy. Specifically, iSSC and SSC adopted
Homotopy optimizer [2] to solve ℓ1-minimization problem. The optimizer
needs two user-specified parameters, sparsity parameter λ and error
tolerance parameter δ. We found a good value combination by setting
λ= (10−7, 10−6, 10−5) and δ= (10−3, 10−2, 10−1). Moreover, iSSC
groups out-of-sample data in a low-dimensional space which preserves
98% energy of the embedding space learned from in-sample data. For the
other competing methods, we set the value range for different parameters
by following the configurations in [4, 5, 6].

Results: To examine the effectiveness of iSSC, Nyström, SEC and AKK,
we randomly selected a half of images (1212) from ExYaleB and 1000
images from USPS as in-sample data, respectively. And the remaining
samples are used as out-of-sample data. For k-means and SSC that cannot
handle the out-of-sample data, we reported their results over the whole data
set without data partition.

Table 1: Performance comparisons in different algorithms over ExYaleB.
Algorithms Accuracy NMI Time(s)

iSSC (1e-6, 1e-3) 59.69% 62.77% 24.88
Nyström (12) 25.72% 46.57% 9.33

Nyström_Orth (2) 21.71% 41.74% 58.87
SEC_K (1e+12, 5, 1) 11.02% 11.09% 34.91
SEC_R (1e+9, 4, 1) 5.97% 4.31% 19.96

AKK (0.4) 8.00% 9.01% 9.94
SSC (1e-6, 1e-3) 64.75% 68.10% 310.30

k-means 9.03% 11.20% 37.05

Table 2: Performance comparisons in different algorithms over USPS.
Algorithms Accuracy NMI Time(s)

iSSC (1e-7, 0.01) 52.93% 52.90% 41.52
Nyström (14) 47.66% 44.42% 15.91

Nyström_Orth (0.5) 50.70% 44.60% 183.37
SEC_K (1e-9, 3, 1) 47.63% 42.28% 43.38
SEC_R (1e-6, 4, 1) 11.70% 1.44% 19.78

AKK (0.3) 48.49% 46.79% 16.81
SSC (1e-7, 0.1) 58.55% 59.76% 7157.04

k-means 46.54% 45.61% 250.82

Tables 1-2 report the clustering quality and the time costs of the tested
algorithms over the data sets. In the parenthesis, we also show the tuned
parameters when the best Accuracy was achieved. From the results, we
have the following observations:

• In all the tests, iSSC demonstrates an elegant balance between running
time and clustering quality. Although iSSC is not the fastest algorithm,
it outperforms the other tested methods with considerable performance
margins in Accuracy and NMI. For example, iSSC achieved 33.97%
gains in Accuracy and 16.20% gains in NMI over the second best
algorithm when ExYaleB database was used to test.

• The clustering quality of iSSC is slight lower than that of SSC, but the
speed of iSSC is 12.47 and 172.38 times faster than that of SSC over
two data sets. Clearly, iSSC makes SSC feasible in large scale setting,
which verifies the efficacy of our method.

Conclusion: In this letter, we have presented an inductive spectral
clustering algorithm, called inductive Sparse Subspace Clustering (iSSC).
The algorithm is an out-of-sample extension of Sparse Subspace Clustering
algorithm (SSC) [1], which not only makes SSC feasible to cluster out-
of-sample data, but also speed up SSC with hundred times. Experimental

results with facial image and digital image clustering indicate the
effectiveness of iSSC comparing with several state-of-the-art approaches.
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